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Charge current in a ferromagnet-superconductor junction with the pairing state of broken
time-reversal symmetry
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We calculate the tunneling-conductance spectra of a ferromagnetic metal/insulator/superconductor using the
Blonder-Tinkham-Klapwijk formulation. Two possible states for the superconductor are considered with the
time-reversal symmetryX() broken, i.e.d,>_y2+is ord,2_y2+id,,. In both cases the tunneling conductance
within the gap is suppressed with the increase of the exchange interaction due to the suppression of the
Andreev reflection. In thed,2_2+is)-wave case the peaks that exist when the ferromagnet is a normal metal
in the amplitude of the-wave component due to the bound-state formation are reduced symmetrically, with the
increase of the exchange field, while in tlig_,2+id,,)-wave case the residual density of states within the
gap develops a dip arouriel=0 with the increase of the exchange field. These results would be useful to
discriminate betweefl-broken pairing states near the surface in Highsuperconductors.
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[. INTRODUCTION superconductor we assume two pairing states, dg., 2
+is, or dy2_y2+idyy, with a complex order parameter
It is generally accepted that the pairing state of High- breaking the time-reversal symmetry. In both cases the tun-
cuprate superconductors is of dominadyz(_,2)-wave sym-  neling conductance within the gap is suppressed with the
metry. However, it is possible for a secondary component téncrease of the exchange interaction, due to the suppression
be induced wherever the dominant order parameter varie@f the Andreev reflection. In thed(2_,2+is)-wave case the
spatially, for example, in regions close to surfat@he local ~Peaks that exist when the ferromagnet is a normal metal in
pairing symmetry can be detected by tunneling measurdh® amplitude of theswave component due to the bound-
ments where Andreev reflection take plade.n the State formation are reduced symmetrically. In thga( 2
Andreev-reflection process an electron incident, in the barrief |9xy)-Wave case the tunneling-conductance within the gap
with an energy below the superconducting gap cannot draiff€VeloPs a dip aroun&=0 with the increase of the ex-
off into the superconductor. It is instead reflected as a hol hange fleId...The tunnelmg-gonductance Ch‘?raCt?“St'CS for
and a Cooper pair is transferred into the superconductor. | -broken pairing states are discussed extensively in Sec. lIl.

) N : . The evolution of the Andreev- and normal-reflection am-
anisotropic high¥; superconductors the transmitted quasi- . : . . X
: . . . . . . plitude with the exchange field presented in Sec. IV explains
particles experience different sign of the pair potential. Thi

its in the f i f bound stat | o th P he suppression of the tunneling conductance with the ex-
results in the formation ot bound states close to the su ac,echange field. The Andreev-reflection amplitude decays to
which are detected as zero-energy peaks in the tunneli

e o "ero at a critical value of the exchange fieddthat depends
spectra as an indication ofl{z_,2)-wave pairing symmetry. only on the angles of the quasiparticle trajectory. A bound

The splitting of the zero-energy conductance peak at 10Viate atg contributes to the Andreev reflection and to the
temperatures observed experimentailys a signature of a conductance for a givex only whenx<x..

two-component pairing state with the time-reversal symme-  The magnetic field for finite-exchange interaction induces
try broken, and is consistent with both tlgz_2+is, or  an imbalance in the peak heights, of the spectra for energy
dy2_2+id,, pairing state. The tunneling spectra of a normalpositive and negative as seen in Sec. V.
metal/insulator/superconductor junctions, for the above pair-  Also thec-axis tunneling spectra presented in the last sec-
ing states has already been calculated, by extending then is similar for Z-broken pairing states, since the pairing
Blonder-Tinkham-Klapwijk(BTK) theory to include the an- potential along the axis does not change sign on the Fermi
isotropy of the pair potentidl Based on the bound-state for- syrface. These results would be helpful to discriminate be-

mation, simple arguments have been derived to explain thgveen time-reversal symmetry broken surface states in high-
subgap conductance in each case and to discriminate bg- syperconductors.

tween the two pairing symmetries.

Moreover the tunneling spectra of ferromagnet-
superconductor junctions has been clarified both for
singlet®=? and triplet® pairing states where the important
parameter is the exchange field. Also the changes of the criti- The motion of quasiparticles in inhomogeneous supercon-
cal temperature of the superconductor iswave ductors is described by the Bogoliubov de GenfdG)
superconductor-ferromagnet multilayers have been stdflied.equations. The motion of electrons inside the ferromagnet is
In this paper we use the scattering approach to study thdescribed within the Stoner model by an effective single-
charge transport through ferromagnet/superconductor witparticle Hamiltonian with an exchange interaction. The BdG
time-reversal {")-breaking pairing-states junctions. For the equations redd

Il. THEORY OF TUNNELING EFFECT
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Ferromagnet Superconductor
[He(r)—pU(x)]u(r)+f dr’A(s,x)v(r")=Eu(r)
g
= electron-like
J dr’ A*(sx)u(r’)—[Hg (r)+pU(x)]v(r)=Euv(r). electron f 2 / ) 85 quasiparticle
(N ooron & s

The single-particle Hamiltonian is given byH(r)= clectron * .
—#2V2/2m,+V(r)—Eg, Eis the energy measured from the AN o foledlike 1
Fermi energyEr. U(r) is the exchange potentiah is 1 p\oa s quasiparticie
(—1) for up(down--spins.A(s,x) is the pair potential, after hol
a transformation from the position coordinates’ to the 04

center-of-mass coordinate=(r+r")/2 and the relative vec- _ )

tor s=r—r’. After Fourier transformation the pair potential ~ FIG. 1. The geometry of the ferromagnet/insulator/singlet super-
depends on the related wave vectomnd x. In the weak conductor interface. The vertical line along thaxis represents the
coupling limitk is fixed on the Fermi surfacék|=kg), and insulator. The arrows illustrate the transmission and reflection pro-

only its directiond is variable. After applying the quasiclas- cesses at the interface s the angle of the incident electron and the
sical approximation, i ds ' normal, 6, is the angle of the reflected-hole trajectory and the nor-

mal, and é, is the angle of the transmitted quasiparticle and the
— normal. Note that is not equal tad, since the retroreflection of the
u(r) u(r) . .
= — a—iker ’ ) Andreev process is lost. In the Andreev-reflection process an elec-
v(r) v(r)

tron with spin-up is Andreev reflected as a hole with spin-down and
o ~_normally reflected as an electron with spin-up.
so that the fast oscillating part, of the wave function is di-
vided out, the BdG equations are reduced to the Andreev When a beam of electrons is incident from the ferromag-
equationd net to the insulator, with an angk® the general solution of
Egs.(4), is the two-component wave functioh, that for x

EU(r):—iupk-VU(r)JrA(a,r)v_(r) <0 is written as

Ev(r)=ivek- Vo(r)+A*(6,r)u(r), 3) P, =

1) 0\
O)e'qw[uxcos%a“u 1)e'ql[T1X°°s"A

where the quantities(r) anduv(r) are electronlike and hole-
like quasiparticles andg is the Fermi velocity. +b 1 @~ idy[|)x cos® (5)
We consider the ferromagnet/insulator/superconductor 1] '
junction shown in Fig. 1. We choose tlyedirection to be
parallel to the interface, and thedirection to be normal to
the interface. The insulator is modeled bysdunction, lo-  _ J2m/?)(Er = U) is the wave vector of quasiparticles in
cated ak=0, of the formV 5(x). The temperature is fixed t0 {he ferromagnet for uplown)-spin. The wave vector of the
0 K. We take both the pair potential and the exchange energyjectronlike, holelike quasiparticles is approximated Ky
as a step function, i.e.,A(,)=0(x)A(0), U(r) = 2mE-/A°. Since the translational symmetry holds in the
=0(—x)U. For the geometry shown in Fig. 1, Eq8) take  y.axis direction, the momenta parallel to the interface is con-
the form served, i.e.q; sin#=q, sinda=kssin 6. Note thaté is dif-
ferent thand, since the retroreflection of the Andreev reflec-
EU(X)= _ikainU(X)JFA(H)U—(X) tion i_s broken. Using the matching conditi’ons of the wave
dx function at x=0, ¥,(0)=%¥,(0), and ¥/ (0)—¥/(0)
d =(2mV/#?)W¥ (0), theAndreev- and normal-reflection am-
L U= * (T plitudes a;;1,b for the spin-up(-down) quasiparticles
Ev(x)—lkadeXv(x)+A (O)u(x). (4) are obtairwc]i aéll]

wherea;|;,byj ;. are the amplitudes for Andreev and nor-
mal reflection for spin-ud-down) quasiparticles, and;;

4n, N\
a = , , . . ot (6)
(_1_7\1_IZT[U)(_1_)\2+IZT[U)+(1_)\1_IZTU])(_1+ )\2—|Zm])n+n_¢_¢+

T . - - - )
(_1_)\1_IZT[“)(_1_)\2+IZT[U)+(1_)\1_IZTU])(_1+ )\2_|ZT[H)n+n_¢_¢i

224502-2



CHARGE CURRENT IN A FERROMAGNEH. .. PHYSICAL REVIEW B 64 224502

05 N . ; w ‘ Uq(E):Uqr(E)+qu(E)’ (12)

04 N\ TR 1 (a2 _

03} I | anu(E)_R_NJ’w/zdecosagqnu(E’G)PT[“q”“’
Lo — (12
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(6}
o1 | | /2
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FIG. 2. The regions of the space @fx. TR, where total reflec- (1+Ny) +Zi
tion occurs, VAR where Andreev-reflected quasiparticles do not

propagate, while the transmitted quasiparticles propagate, Aﬂvhere PTUJ:(EFiU)/ZEF .IS t.he polarlzatlon for
where Andreev reflection occurs. up(down)-spin. In thezo= 0 limit the interface is regarded as

a weak link, showing metallic behavior while for largg

where z,=(mV/42ky), 21(11=(220/c0869, \1=(costl values the interface becomes insulating.

We consider the following cases
cos6g)(th1/Ks), No=(cosbOa/cosb)(q);/k). The BCS co- .
herence factors are given by @ In the @yz-y2+is)-wave case
A(9)=A;cod2(6—B)]+iA,, (15
w2 =[1+E?—|A.(0)|?E]2, ) _ _
- whereg is the angle between the normal to the interface and
5 the x axis of the crystal.
vi=[1-VE*~|AL(O)[E]2, 9 (b) In the (dyz_,2+id,,)-wave case
andn.=v./u.. The internal phase coming from the en- A(8)=A,co§2(6—B)]+iA,siN2(6—pB)], (16)

ergy gap is given byp. =[A_(6)/|A.(6)[], whereA (6) .

=A(6) [A (0)=A(m—6)], is the pair potential experi- where the angular form of the secondary component is ob-

enced by the transmitted electronlifelelike) quasiparticle.  t@inéd by the substitution g8 in the (dy2-y2)-wave order
When 6> sin (k/q;)=0, total reflection occurs and the Parameter bys-+ /4.

spin and charge current vanishes. In the spacgin Fig.
2, the dotted line from the solution of the equati@n lII. TUNNELING-CONDUCTANCE CHARACTERISTICS

=sin {11 +x), wherex=U/E, defines the boundary of |, Figs. 3 and 4 we plot the tunneling conductanggE)
the region (labeled as TR where total reflection occurs. (.. qitterent values of the exchange interaction U/E, (a)
When 6.,> 0>sin*1(q1/ql)zecz although the transmitted 20=0, B=0, (b) zg=2.5, B=0, and(c) zy=2.5, B= /4.
quasiparticles in the superconductor, do propagate, the, . F;airing ,symmetry of the éuperconductord";a s
Andreev-reflected quasiparticles, do not propagate. This PrQyith A-=A~ and A.=0.3An in Fig. 3,d, 2+id_y with
cess is called virtual Andreev-reflectiédAR process.’ In A1=A01 A20=0 3A02in Fig % Forze—0, the subgap con-

this case the spin and charge current do not vanish Sincecﬂjctance is suppressed, with the increase, @ in the case
finite amplitude of the Andreev reflection still exists. For o =\ -ve superc;)nducté?
Xe—y :

< 6., Andreev reflection occurs. In Fig. 2 the solid line de- In the (dyz_+is)-wave case when the ferromagnet is

termifnled by the equation in the abovg inequality, ., normal metal(i.e., x=0), the boundary orientation 8+0,
=sin"y(1+x)/(1-x), separates the region where the VAR 5 the harrier strength, is large, a peak exists in the tun-

process occurslabeled as VAR from the region where qiing spectra in the amplitude of the secondary component
Andreev reflection occurslabeled as AR A symmetric due to the bound-state formation. The peak height is maxi-

branch that is not presented in the figure occurs for negativpnum for B=m/4 since the bound-state is formed for all

anglesé. an _
. glesé and collapses to zero fop=0. For thed,> 2
According to the BTK formula the conductance for the +id,, pairing state, fox=0 the tunneling conductance has

charge current of the junctionr, (E,6), for updown)-  residual values due to the formation of bound states. The
spin quasiparticles, is expressed in terms of the probabilityound-state energies depend on the boundary orientgtion
amplitudesa; ;b as*® as well as on the quasiparticle angleThe reduced height of
the subgap conductance in the,{_,2+id,,)-wave case is
_ N ) ) explained from the discrete values of the an@lever which
0, (B, 0)=RE 1+ )\—|am]| —Ibyyl?|- (100 the bound state occurs as compared to the rangevalues
! in the (dy2_y2+is)-wave casé.Also an enhancement ap-

The tunneling conductance, normalized by that in the normap€ars in the ¢, ,2+id,,)-wave state ax=0, E=Aq for
state is given by B=l4 due to the larger contribution to the spectra of the
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FIG. 3. Normalized tunneling conductaneg(E) as a function FIG. 4. The same as in Fig. 2. The pairing symmetry of the
of E/A, for x=0 (solid line), x=0.4 (dotted ling, x=0.8 (dashed  superconductor isl2_,2+idy,, with A;=A,, A,=0.3A,.
line), andx=0.999(long-dashed ling for different orientationga)
20=0, B=0, (b) 20=2.5, B=0, (¢) 2p=2.5, B=m/4. The pair-  3(c), for the (d,2_,2+is)-wave pairing state, where as the
ing symmetry of the superconductor dsz_>+is with A;=Ao,  exchange field increases the conductance peaks are reduced
A2=0.3,. symmetrically. In thed,2_,2+id,, a dip develops within the

subgap region as seen in Figcp The E=0 value is more

bound state ab=0(E=A4, ). The same peak akq be-  sensitive to the exchange fielde., the Andreev-reflection
comes more pronounced in a calculation including thecoefficient goes to zero fasjeand the tunneling conductance
self-consistency? for E=0, is suppressed more easily as the exchange field

In the Andreev-reflection process the incident electronincreases. In both pairing states the reduction of the subgap
and the Andreev-reflected hole have wave vectors with opeonductance is symmetric since the density of states modu-
posite spins. In a normal metal the spin-up and spin-dowration within the subgap is not induced by spin-dependent
wave vectors are equal and no spin effects occur in the Aneffects, for example, a magnetic field. In that case we would
dreev reflection. However, in a ferromagnet the wave vectorexpect an asymmetric evolution with the exchange field
for spin-up and spin-down are different and this affects thesince the effect of the magnetic field depends on the spin of
Andreev reflection. In that case the Andreev-reflected holghe incident quasiparticle. This has been obtained in Ref. 10
decays exponentially for large distance in the ferromagnetvhere the tunneling conductance in a ferromagnet/insulator/
and there is no interference effect between electron and hol@l,2 2+ is)-wave superconductor and also the effect of the
waves. Moreover no pairs are transferred into the superconmagnetic fieldH in a ferromagnet/insulatod(:_2)-wave
ductor, and there is weak or no interference between theuperconductor, is studied in order to identify the mechanism
transmitted quasiparticles in the superconductor. In this sengesponsible for the splitting of the zero-energy conductance
the ferromagnet does not allow the quasiparticles to entgpeak in highT; superconductors. In thedfz_,2+is)-wave
into the superconductor, and to experience the sign change efate forzy=2.5, =0, andx=0, as seen in Fig.(B) there
the pair potential, which is the main reason for the tunnelingare no states within the subgap amg(E) reduces to zero
peaks. As a consequence the conductance peaks disapp#@re. In thed,>_,2+id,, for Z,=2.5, =0 as seen in Fig.
when the exchange field gets very large. This is seen in Figl(b) there are residual values within the subgap that are sup-
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FIG. 5. (@) The magnitude of the Andreev-reflection coefficient  FIG. 6. The magnitude of the Andreev-reflection coefficient
Re(\,/\1)|a;; ;]2 as a function of the exchange fietdfor spin-up ~ Re(\»/\4)|a;(;;|? (@ and normal-reflection coefficiefb,(;|* (b)
(-down) quasiparticles, soliddotted line, for = 7/4 and 6= /8, as a function of the exchange fietdfor spin-up(-down) quasipar-
at the bound-state enerdy=0.3A,. The pairing symmetry of the ticles, soliddotted line, for two pairs of E,#), for which bound
superconductor igl,2_y2+is and 8= m/4. (b) The corresponding states occur, i.e. §=0,0=7/4), and E=0.3A,,0=0) in a super-
magnitude of the normal-reflection coefficietblm]\2 as afunction  conductor with (l,2_,2+id,,)-wave pairing, angd= /4.

of the exchange field. ) o )
=\,, the Andreev-reflection coefficient is equal to 1, and the

pressed ag gets larger. Foz,=0 the evolution of the pair- normal-reflection coefficient is equal to zero, as obtained
ing state with the exchange field is similar in the two pairingfrom Egs.(18) and(19). In this case the conductance peak is
states as seen in Figsi@Band 4a). due to the normal-state conductance in 84) that varies as
1/z3. As x increases the amplitude of the Andreev-reflection
decays to zero at a critical value that depends from the
angle @ for which bound state occurs. The amplitude of the
We examine the evolution of the bound states with thenormal reflection increases with the exchange field. The sup-
exchange field. The equation giving the energy peak level pression of the Andreev reflection amplitude witrexplains
IS written as the reduction of the conductance peakxascreases. In the
. space off,x the critical exchange field, is defined from the
¢*¢’+n+n*|E=Ep: 1.0. 17 separating line between the VAR region and the AR region in
When this condition occurs the Andreev- and normal-Fi9- 2. For trajectorie® that correspond to bound states the
reflection amplitudesa;(|;,b;;; for the spin-up(-down) Ar_lc_ireev reflectlon_vamshes lehln the VAR region. The
quasiparticles are reduced to critical exchgnge fieldk, is maximum &.=1) when the
bound state is ab=0 and is reduced to zero a moves
2N\, toward 6=+ /2. This is also seen in Figs.(® and §b)
am]:mv (18) where for 6= #/8, x.=0.75, while for 6==/4, x.=0.33.

For a given value of the exchange fielda bound state &
A=\, contributes to ther(E) only if x<<x.(#). This means that as
(19  xincreases the range of bound states that contributes to the

tunneling conductance is reduced and the peaks are sup-
In Fig. 5@ we plot the magnitude of the Andreev-reflection pressed.
amplitude for spin-up  (-down) quasiparticle In the (dy2_y2+id,y)-wave case when the ferromagnet is
Re()\zl)\l)|am]|2 as a function of the exchange fieldfor ~ a normal metal, X=0) the bound states occur for discrete
B=mwl4, zy=2.5, for the @,2_,2+is)-wave case. The cor- values of the quasiparticle anghefor fixed 8. The Andreev-
responding magnitude of the normal-reflection amplitude igeflection coefficient is equal to 1 for these values fof
plotted in Fig. %b). The energy is equal to the amplitude of When the exchange field increases the Andréermaly-
the sswave componentE=0.3Ag) for which bound states reflection coefficient goes to zekd) at a critical valuex, .
are formed for 6< #</2, when the ferromagnet is normal This is seen in Figs. (& and Gb) for two different pairs of
metal (i.e., x=0). For 6==/4,7/8, andx=0, where\;  (E,#) for which bound state is formed fotr=0, i.e., E

IV. SUPPRESSION OF THE BOUND-STATE ENERGIES

bT[l]:)\1+)\2'
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=0,0=7/4) and E=0.3A,,0=0)2 The critical value ofx

for which the Andreev-reflection coefficient goes to zero is
independent from the pairing potential, and also from the
energy of the bound state. It depends only on the afgle
This is seen in Figs. 5 and 6, where fé# /4 the critical
exchange field isx;=0.33 for both pairing states and for
different values of the bound-state energy, 0.3\, and

E=0 correspondingly. The variation of the bound-state angle
0 with x. seen in Fig. 2 holds also for bound states in the
(dy2_y2+id,,)-wave state, and can be used to explain the
suppression of the tunneling conductance at zero energy seen
in Fig. 4(c) with the exchange fielk as follows. ForE
=0.3\, a bound state exists at=08 for which x,~1 is
maximum. Forx<x. the incident electrons are Andreev-
reflected and the tunneling conductance has a finite value.
The variation of the Andreev-reflection amplitude withs

seen in Fig. 6a). For the same energy another bound state
exists atd= /2, which does not contribute to the Andreev
reflection sincex. is zero for this bound state. However, for
E=0 one bound state is formed for values éfclose to

— /2 wherex, is close to zero and the Andreev reflection
does not occur. The other bound stat&at0 occurs foré

=/4 and contributes to the Andreev reflection up xo . _ .
~0.33, as seen in Fig.(8. For x>0.33 the Andreev- FIG. 7. Normallze_d t_unnellng conductanq@(E) as a function
reflection amplitude is zero and also the tunneling conduclf.)f E/Ao gor_xozgggscl)hd Ilge),;(z()lg(oflotted_h;e), X:_O'A/'(d.‘""Sh;d
tance i suppressed. Tis s seen in Fig)dor =0 and " 210X 0995(010 dashed e for 12,4~ . n e
x=0.4 (dotted ling. Therefore the tunneling conductance atsymmetry of the superconductor(@ dxz,yz+ios with A,= A, and
E=0 decays to zero more rapidly withthan the conduc- A,=0.3. (b) dyz_y2+idyy, with A;=A, andA,=0.3,.
tance aE=0.3A,. For a combination ofk, #) for which no
bound state is formed, the Andreev-reflection amplitude is

Xy

suppressed for all values of the exchange interactiordi- rafte_d. In the Iatter_case the Ie{ﬁght)_branch of the spectra
cating that the exchange field mainly affects the bound state§riginates from spin-ug-down) quasiparticle spectraq (E
_MBH)[Uql(E+MBH)]-
V. MAGNETIC-FIELD EFFECTS For the @,2_,2+is)-wave case the condition for the for-

) ) ) mation of bound states is slightly modified under the pres-
In this section we describe the effect of the external magznce of magnetic field t9E — ugH|=A,, for the spin-up
netic f|elq H in the §pectra for <_j|fferent values of the ex- region, andE+ ugH|= A, for the spin-down, from the cor-
change field. We will see that since the effect of the mag- oqhondingE|= A, in the absence of any field. So the mul-
netic field _dep_ends on the spin, the evolu_tlon of the tunne“_”Qiplication of the @2_,2+is)-wave pairing state and the
spectra withx is asymmetric. The tunneling conductance is resence of magnetic-field results into the appearance of four
given by peaks in the conductance spectra, which in the limitxof
=0 have equal heights.
0q(E)=0q (E—ugH)+0oq (E+ugH). (20 The main effect of the polarization is the imbalance in the
peak heights folE positive and negative. The ratio of the
In Figs. 7a) and 7b) the tunneling conductance,(E) is peaks for positive and negative energy is proportional to the
plotted for fixed magnetic fielgugH/Ay,=0.2, and barrier ~€xchange field of the material. This can be extracted from the
strengthz,=2.5, for different values of the exchange inter- different evolution of the Andreev- and normal-reflection co-
action x. The pairing symmetry of the superconductor is efficients for spin-up and -down quasiparticles with the ex-
dy2_,2+is and d,2_2+id,y, respectively. The orientation change field seen in Figs. 5 and 6. Note that although the
of the superconductor is chosen s /4. bound-state energies are modified in the presence of the
In the absence of the exchange interactior=Q) the  Mmagnetic field, the analysis concerning the above figures still
magnetic field splits symmetrically the tunneling spectrumholds for the modified energies. For a given energy and angle
that is a linear superposition of the spectra for spin-upf_for which bound state occurs the quantitieg (E,6),
(-down) quasiparticles. The amplitude of the splitting de- (rql(E,a), have different values causing the asymmetricity in
pends linearly on the magnetic field. For the case of the peak heights for the spin-up and -down part of the spec-
ugH/Ag=0.2, seen in Fig. 7 the spin-ygdown) part of the  trum. The asymmetricity in the Andreev-reflection coeffi-
spectra partially overlap while for larger values of the mag-cient can also be seen in Figia8 for spin-up(-down) qua-
netic field the spin-up and -down branches are well sepasiparticles as soliddotted line, as a function of the energy
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FIG. 8. (a) The magnitude of the Andreev-reflection coefficient  FIG. 9. (a) The magnitude of the Andreev-reflection coefficient
Re(\2/\1)]a;( ;| as a function of/Ay, for spin-up(-down) qua- ~ Re(\,/\;)|a;[;;|? as a function ofE/A,, for spin-up(-down) qua-
siparticles, solid(dotted line, for 8= =/8, for exchange fieldk siparticles, solid(dotted line, for =0, for exchange fieldx
=0.6, ugH/A,=0.2. The pairing symmetry of the superconductor =0.6, ugH/A,=0.2. The pairing symmetry of the superconductor
is dy2_2+is and 8=/4. (b) The corresponding magnitude of the is dy2_2+idy,, and8==/4. (b) The corresponding magnitude of

normal-reflection coefficieriibﬂm2 as a function oE/A,,. the normal-reflection coefficierhbm”2 as a function ofE/A,.
E/A, for fixed exchange ﬂelck_= 0.6, aﬂd the pairing sym- dw (1) dw(r) omvV

metry of the superconductor &._,2+is. The same char- - - W(r) (22)
acteristic appears in the normal-reflection coefficient that is dz =0 dz 2=0, h? .o

plotted in Fig. 8b). The peaks in the Andreev-reflection co-

efficient are formed at the bound-state energies and due {Gsjng the obtained coefficients the tunneling conductance is

the finite exchange interaction are suppressed from the unigaiculated using the formula given in the preceding sections,
The same result is plotted in Figs(a® and 9b), for the

(dy2_y2+id,y)-wave pairing symmetry. Here the bound state 1 (2 (2n o
is formed for a particular value of=0. Other reasons for oqm](E)=R—f J cosé sin aaqm]
the asymmetricity of the spectra for the spin{egown) qua- NJO JO
siparticle are the factor®,;;; andq;;,; that appear in the X (E.0.4)P dod 23
definition of the tunneling conductance, EG2). (E.6,4)P11011d0d 4, @3
hole-like
VI. c-AXIS TUNNELING quasiparticle Superconductor

In the preceding sections we discussed the tunneling ef- 0 o eleCt.m;;ml(e
fect in two-dimensional models. In this section we discuss > : s quasipathcie
the tunneling effect along the axis that takes into account :

three-dimensional effects. A semi-infinite double-layer struc-
ture is assumed and the volume of the integration is taken as
the three-dimensional half sphere. The interface is perpen- 0,
dicular to thez axis and is located &=0 as seen in Fig. 10. hol, D,

Suppose that an electron is injected from the ferromagnet 04/

with polar angled and azimuthal angle>. The electronlike 0

(holelike) quasiparticle will experience different pair poten- electron *
tials App/(0+) [App/(a_)], where 6,=6 and 0_=m— 0, electron *
and the quantitiep,p’ denote spin indices. The coefficients

of the Andreev and normal reflection are obtained by solving

the BdG equations under the following boundary conditions i, 10, The figure illustrates the transmission and reflection

. processes of the quasiparticle at the interface of the junction with
\If(r)|Z:07—\If(r)|Z:0+, @D xy plane interface.

Xy interface

Ferromagnet
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FIG. 11. Normalized tunneling conductaneg(E) as a function
of E/A for x=0 (solid line), x=0.4 (dotted ling, x=0.8 (dashed
line), andx=0.999(long dashed ling for z;=2.5. The interface is
perpendicular to the axis. The pairing symmetry of the supercon-
ductor is (a) dy2_y2+is with A;=Ag, A,=0.3Aq. (b) dy2_y2

+id,y with A;=Aq, A,=0.2A,.

where

/2
Rsz sin@cosf[ oy (6)Pq,+ oy (0)Pq,]d6d ¢,
0 1 !

(24)

4N,

log 0)=——FF5—.
i (?) (1+N)%+Z)

The pairing potentials are given by
(@ In the (dy2_y2+is)-wave case

A(0,p)=A,c0S2p+iA,. (26)

(b) In the (dy2_y2+id,,)-wave case

A(0,p)=A;c0S2p+iA,Sin2¢. (27

(29
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feel a sign change of the pair potential on the Fermi surface.
The case ot-axis tunneling has been treated experimentally
using scanning tunneling microscopy or point contact spec-
troscopy, for the case of normal metal/superconductor
junction”'8 No zero energy peak and a clear V-like line
shape for thec-axis tunneling conductance has been ob-
served. The calculated spectra for tlg _2+is, dy2_y2
+id,, states is flattened out fd<<A, that contradicts the
experimental data. Thed(2_,2)-wave order parameter does
not change sign and is not suppressed atcthgis surface.

So the attractive interaction in the subdominant pairing chan-
nel is small relative to the dominant and a transition to a state
breaking7 does not happen. On the other hand, a mixed
order parameter such as tlg_2+s may exist due to the
orthorhombic distortion of the lattice, as seen in thaxis
Josephson experiments.

VII. CONCLUSIONS

We calculated the tunneling conductance in ferromagnet/
insulator/superconductor, junction using the BTK formalism.
We assumed two possible pairing potentials for the supercon-
ductor that break the time-reversal symmetry, itz 2
+is, dy2_,2+id,,. The evolution of the spectra with the
exchange field is the same fap=0 but different in the
tunneling limit wherez, is large, and can be considered as a
probe for time-reversal symmetry broken pairing states. The
weak Andreev reflection within the ferromagnet results in the
suppression of the tunneling conductance and eliminates the
resonances due to the anisotropy of the pair potential. The
evolution of the tunneling conductance within the gap is
symmetric since the splitting is not induced from spin-
dependent effects, for example, a magnetic field, but from
the nodeless form of the pairing potential.

We also derived that the condition for a bound state at
angle # to contribute to the Andreev-reflection and hence to
the tunneling conductance, for a given value of the exchange
interactionx is Xx<X.. X is the critical exchange field for
which the Andreev-refletion coefficient goes to zero and is
given from the separating line between the VAR region and
the AR region in the space @ x. This condition was used to
explain the suppression of the conductance arolme0
with the exchange field in thed(2_,2+id,,)-wave state.

The magnetic field splits linearly the tunneling spectra,
and the exchange potential induces an imbalance in the peak
heights for positive and negative energies. The asymmetric-
ity in the peak heights originates from the different evolution
of the Andreev- and normal-reflection amplitudes at the
bound-state energies with the exchange field.

The c-axis tunneling from ferromagnet to superconductor
does not show any differences betwe@ibroken pairing
states since the transmitted quasiparticles experience the

Figures 11a) and 11b) show the calculated conductance same sign of the pairing potential.
spectra for various exchange potentials. Unlike the case Throughout this paper the order parameter is not calcu-

where the interface is perpendicular to thaxis the tunnel-
ing spectra is similar for the,2_,2+is, dy2_,2+id,, cases.

lated self-consistently. However, since the characteristics of
the tunneling conductance depend mainly from the angular

Also a subgap region is formed within the energy gap due tgart of the pairing potential, the essential results are expected
the nodeless form of the order parameter. The conductande change only quantitatively when the suppression of the
peaks are absent since the transmitted quasiparticles do notder parameter near the surface is taken into account.
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