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Charge current in a ferromagnet-superconductor junction with the pairing state of broken
time-reversal symmetry
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Department of Physics, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece

~Received 20 February 2001; revised manuscript received 31 May 2001; published 19 November 2001!

We calculate the tunneling-conductance spectra of a ferromagnetic metal/insulator/superconductor using the
Blonder-Tinkham-Klapwijk formulation. Two possible states for the superconductor are considered with the
time-reversal symmetry (T ) broken, i.e.,dx22y21 is or dx22y21 idxy . In both cases the tunneling conductance
within the gap is suppressed with the increase of the exchange interaction due to the suppression of the
Andreev reflection. In the (dx22y21 is)-wave case the peaks that exist when the ferromagnet is a normal metal
in the amplitude of thes-wave component due to the bound-state formation are reduced symmetrically, with the
increase of the exchange field, while in the (dx22y21 idxy)-wave case the residual density of states within the
gap develops a dip aroundE50 with the increase of the exchange field. These results would be useful to
discriminate betweenT-broken pairing states near the surface in high-Tc superconductors.

DOI: 10.1103/PhysRevB.64.224502 PACS number~s!: 74.50.1r, 74.80.Fp
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I. INTRODUCTION

It is generally accepted that the pairing state of highTc

cuprate superconductors is of dominant (dx22y2)-wave sym-
metry. However, it is possible for a secondary componen
be induced wherever the dominant order parameter va
spatially, for example, in regions close to surfaces.1 The local
pairing symmetry can be detected by tunneling meas
ments where Andreev reflection take place.2,3 In the
Andreev-reflection process an electron incident, in the bar
with an energy below the superconducting gap cannot d
off into the superconductor. It is instead reflected as a h
and a Cooper pair is transferred into the superconducto
anisotropic high-Tc superconductors the transmitted qua
particles experience different sign of the pair potential. T
results in the formation of bound states close to the surfa4

which are detected as zero-energy peaks in the tunne
spectra as an indication of (dx22y2)-wave pairing symmetry.5

The splitting of the zero-energy conductance peak at
temperatures observed experimentally6,7 is a signature of a
two-component pairing state with the time-reversal symm
try broken, and is consistent with both thedx22y21 is, or
dx22y21 idxy pairing state. The tunneling spectra of a norm
metal/insulator/superconductor junctions, for the above p
ing states has already been calculated, by extending
Blonder-Tinkham-Klapwijk~BTK! theory to include the an
isotropy of the pair potential.8 Based on the bound-state fo
mation, simple arguments have been derived to explain
subgap conductance in each case and to discriminate
tween the two pairing symmetries.

Moreover the tunneling spectra of ferromagn
superconductor junctions has been clarified both
singlet,9–12 and triplet13 pairing states where the importa
parameter is the exchange field. Also the changes of the c
cal temperature of the superconductor ins-wave
superconductor-ferromagnet multilayers have been studie14

In this paper we use the scattering approach to study
charge transport through ferromagnet/superconductor
time-reversal (T )-breaking pairing-states junctions. For th
0163-1829/2001/64~22!/224502~9!/$20.00 64 2245
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superconductor we assume two pairing states, i.e.,dx22y2

1 is, or dx22y21 idxy , with a complex order paramete
breaking the time-reversal symmetry. In both cases the
neling conductance within the gap is suppressed with
increase of the exchange interaction, due to the suppres
of the Andreev reflection. In the (dx22y21 is)-wave case the
peaks that exist when the ferromagnet is a normal meta
the amplitude of thes-wave component due to the boun
state formation are reduced symmetrically. In the (dx22y2

1 idxy)-wave case the tunneling-conductance within the g
develops a dip aroundE50 with the increase of the ex
change field. The tunneling-conductance characteristics
T-broken pairing states are discussed extensively in Sec

The evolution of the Andreev- and normal-reflection a
plitude with the exchange field presented in Sec. IV expla
the suppression of the tunneling conductance with the
change field. The Andreev-reflection amplitude decays
zero at a critical value of the exchange fieldxc that depends
only on the angleu of the quasiparticle trajectory. A boun
state atu contributes to the Andreev reflection and to t
conductance for a givenx only whenx,xc .

The magnetic field for finite-exchange interaction induc
an imbalance in the peak heights, of the spectra for ene
positive and negative as seen in Sec. V.

Also thec-axis tunneling spectra presented in the last s
tion is similar forT-broken pairing states, since the pairin
potential along thec axis does not change sign on the Fer
surface. These results would be helpful to discriminate
tween time-reversal symmetry broken surface states in h
Tc superconductors.

II. THEORY OF TUNNELING EFFECT

The motion of quasiparticles in inhomogeneous superc
ductors is described by the Bogoliubov de Gennes~BdG!
equations. The motion of electrons inside the ferromagne
described within the Stoner model by an effective sing
particle Hamiltonian with an exchange interaction. The Bd
equations read15
©2001 The American Physical Society02-1
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N. STEFANAKIS PHYSICAL REVIEW B 64 224502
@He~r!2rU~x!#u~r!1E dr8D~s,x!v~r8!5Eu~r!

E dr8D* ~s,x!u~r8!2@He* ~r!1rU~x!#v~r!5Ev~r!.

~1!

The single-particle Hamiltonian is given byHe(r)5
2\2

“ r
2/2me1V(r)2EF , E is the energy measured from th

Fermi energyEF . U(r) is the exchange potential,r is 1
(21) for up ~down-!-spins.D(s,x) is the pair potential, after
a transformation from the position coordinatesr,r8 to the
center-of-mass coordinatex5(r1r8)/2 and the relative vec
tor s5r2r8. After Fourier transformation the pair potenti
depends on the related wave vectork and x. In the weak
coupling limit k is fixed on the Fermi surface (uku5kF), and
only its directionu is variable. After applying the quasiclas
sical approximation, i.e.,15

S ū~r!

v̄~r!
D 5e2 ik•rS u~r!

v~r! D , ~2!

so that the fast oscillating part, of the wave function is
vided out, the BdG equations are reduced to the Andr
equations3

Eū~r!52 ivFk•“ū~r!1D~u,r!v̄~r!

Ev̄~r!5 ivFk•“ v̄~r!1D* ~u,r!ū~r!, ~3!

where the quantitiesū(r) andv̄(r) are electronlike and hole
like quasiparticles andvF is the Fermi velocity.

We consider the ferromagnet/insulator/supercondu
junction shown in Fig. 1. We choose they direction to be
parallel to the interface, and thex direction to be normal to
the interface. The insulator is modeled by ad function, lo-
cated atx50, of the formVd(x). The temperature is fixed to
0 K. We take both the pair potential and the exchange ene
as a step function, i.e.,D(u,r)5Q(x)D(u), U(r)
5Q(2x)U. For the geometry shown in Fig. 1, Eqs.~3! take
the form

Eū~x!52 ivFkFx

d

dx
ū~x!1D~u!v̄~x!

Ev̄~x!5 ivFkFx

d

dx
v̄~x!1D* ~u!ū~x!. ~4!
22450
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When a beam of electrons is incident from the ferroma
net to the insulator, with an angleu, the general solution of
Eqs.~4!, is the two-component wave functionC I that for x
,0 is written as

C I5S 1

0D eiq↑[↓]x cosu1a↑[↓] S 0

1D eiq↓[↑]x cosuA

1b↑[↓] S 1

0D e2 iq↑[↓]x cosu, ~5!

wherea↑[↓] ,b↑[↓] , are the amplitudes for Andreev and no
mal reflection for spin-up~-down! quasiparticles, andq↑[↓]
5A(2m/\2)(EF6U) is the wave vector of quasiparticles i
the ferromagnet for up~down!-spin. The wave vector of the
electronlike, holelike quasiparticles is approximated byks

5A2mEF /\2. Since the translational symmetry holds in th
y-axis direction, the momenta parallel to the interface is c
served, i.e.,q↑ sinu5q↓ sinuA5kssinus. Note thatu is dif-
ferent thanuA since the retroreflection of the Andreev refle
tion is broken. Using the matching conditions of the wa
function at x50, C I(0)5C II (0), and C II8 (0)2C I8(0)
5(2mV/\2)C I(0), theAndreev- and normal-reflection am
plitudes a↑[↓] ,b↑[↓] for the spin-up~-down! quasiparticles
are obtained as

FIG. 1. The geometry of the ferromagnet/insulator/singlet sup
conductor interface. The vertical line along they axis represents the
insulator. The arrows illustrate the transmission and reflection p
cesses at the interface.u is the angle of the incident electron and th
normal,uA is the angle of the reflected-hole trajectory and the n
mal, andus is the angle of the transmitted quasiparticle and
normal. Note thatu is not equal touA since the retroreflection of the
Andreev process is lost. In the Andreev-reflection process an e
tron with spin-up is Andreev reflected as a hole with spin-down a
normally reflected as an electron with spin-up.
a↑[↓]5
4n1l1

~212l12 iz↑[↓] !~212l21 iz↑[↓] !1~12l12 iz↑[↓] !~211l22 iz↑[↓] !n1n2f2f1*
, ~6!

b↑[↓]5
~212l21 iz↑[↓] !~12l11 iz↑[↓] !1~211l22 iz↑[↓] !~212l11 iz↑[↓] !n1n2f2f1*

~212l12 iz↑[↓] !~212l21 iz↑[↓] !1~12l12 iz↑[↓] !~211l22 iz↑[↓] !n1n2f2f1*
, ~7!
2-2
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CHARGE CURRENT IN A FERROMAGNET- . . . PHYSICAL REVIEW B 64 224502
where z05(mV/\2ks), z↑[↓]5(2z0 /cosus), l15(cosu/
cosus)(q↑[↓] /ks), l25(cosuA /cosus)(q↓[↑] /ks). The BCS co-
herence factors are given by

u6
2 5@11AE22uD6~u!u2/E#/2, ~8!

v6
2 5@12AE22uD6~u!u2/E#/2, ~9!

and n65v6 /u6 . The internal phase coming from the e
ergy gap is given byf65@D6(u)/uD6(u)u#, whereD1(u)
5D(u) @D_(u)5D(p2u)#, is the pair potential experi
enced by the transmitted electronlike~holelike! quasiparticle.

Whenu.sin21(ks/q↑)[uc1 total reflection occurs and th
spin and charge current vanishes. In the space ofu,x in Fig.
2, the dotted line from the solution of the equationu
5sin21(1/A11x), wherex5U/EF , defines the boundary o
the region ~labeled as TR! where total reflection occurs
When uc1.u.sin21(q↑ /q↓)[uc2 although the transmitted
quasiparticles in the superconductor, do propagate,
Andreev-reflected quasiparticles, do not propagate. This
cess is called virtual Andreev-reflection~VAR process!.10 In
this case the spin and charge current do not vanish sin
finite amplitude of the Andreev reflection still exists. Foru
,uc2 Andreev reflection occurs. In Fig. 2 the solid line d
termined by the equation in the above inequality, i.e.,u
5sin21A(11x)/(12x), separates the region where the VA
process occurs~labeled as VAR! from the region where
Andreev reflection occurs~labeled as AR!. A symmetric
branch that is not presented in the figure occurs for nega
anglesu.

According to the BTK formula the conductance for th
charge current of the junction,s̄q↑[↓]

(E,u), for up~down!-
spin quasiparticles, is expressed in terms of the probab
amplitudesa↑[↓] ,b↑[↓] as2,10

s̄q↑[↓]
~E,u!5ReF11

l2

l1
ua↑[↓] u22ub↑[↓] u2G . ~10!

The tunneling conductance, normalized by that in the nor
state is given by

FIG. 2. The regions of the space ofu,x. TR, where total reflec-
tion occurs, VAR where Andreev-reflected quasiparticles do
propagate, while the transmitted quasiparticles propagate,
where Andreev reflection occurs.
22450
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sq~E!5sq↑~E!1sq↓~E!, ~11!

sq↑[↓]
~E!5

1

RN
E

2p/2

p/2

du cosus̄q↑[↓]
~E,u!P↑[↓]q↑[↓] ,

~12!

where

RN5E
2p/2

p/2

du cosu@sN↑~u!P↑q↑1sN↓~u!P↓q↓#, ~13!

sN↑[↓]
~u!5

4l1

~11l1!21z↑[↓]
2

, ~14!

where P↑[↓]5(EF6U)/2EF is the polarization for
up~down!-spin. In thez050 limit the interface is regarded a
a weak link, showing metallic behavior while for largez0
values the interface becomes insulating.

We consider the following cases
~a! In the (dx22y21 is)-wave case

D~u!5D1 cos@2~u2b!#1 iD2, ~15!

whereb is the angle between the normal to the interface a
the x axis of the crystal.

~b! In the (dx22y21 idxy)-wave case

D~u!5D1 cos@2~u2b!#1 iD2 sin@2~u2b!#, ~16!

where the angular form of the secondary component is
tained by the substitution ofb in the (dx22y2)-wave order
parameter byb1p/4.

III. TUNNELING-CONDUCTANCE CHARACTERISTICS

In Figs. 3 and 4 we plot the tunneling conductancesq(E)
for different values of the exchange interactionx5U/EF ~a!
z050, b50, ~b! z052.5, b50, and~c! z052.5, b5p/4.
The pairing symmetry of the superconductor isdx22y21 is
with D15D0 and D250.3D0 in Fig. 3, dx22y21 idxy with
D15D0 , D250.3D0 in Fig. 4. Forz050, the subgap con-
ductance is suppressed, with the increase ofx, as in the case
of a dx22y2-wave superconductor.10

In the (dx22y21 is)-wave case when the ferromagnet
normal metal~i.e., x50), the boundary orientation isbÞ0,
and the barrier strengthz0 is large, a peak exists in the tun
neling spectra in the amplitude of the secondary compon
due to the bound-state formation. The peak height is ma
mum for b5p/4 since the bound-state is formed for a
anglesu and collapses to zero forb50. For thedx22y2

1 idxy pairing state, forx50 the tunneling conductance ha
residual values due to the formation of bound states. T
bound-state energies depend on the boundary orientatiob
as well as on the quasiparticle angleu. The reduced height o
the subgap conductance in the (dx22y21 idxy)-wave case is
explained from the discrete values of the angleu over which
the bound state occurs as compared to the range ofu values
in the (dx22y21 is)-wave case.8 Also an enhancement ap
pears in the (dx22y21 idxy)-wave state atx50, E5Ddxy

for

b5p/4 due to the larger contribution to the spectra of t

t
R

2-3
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N. STEFANAKIS PHYSICAL REVIEW B 64 224502
bound state atu50(E5Ddxy
).The same peak atDdxy

be-
comes more pronounced in a calculation including
self-consistency.16

In the Andreev-reflection process the incident elect
and the Andreev-reflected hole have wave vectors with
posite spins. In a normal metal the spin-up and spin-do
wave vectors are equal and no spin effects occur in the
dreev reflection. However, in a ferromagnet the wave vec
for spin-up and spin-down are different and this affects
Andreev reflection. In that case the Andreev-reflected h
decays exponentially for large distance in the ferromag
and there is no interference effect between electron and
waves. Moreover no pairs are transferred into the superc
ductor, and there is weak or no interference between
transmitted quasiparticles in the superconductor. In this se
the ferromagnet does not allow the quasiparticles to e
into the superconductor, and to experience the sign chang
the pair potential, which is the main reason for the tunnel
peaks. As a consequence the conductance peaks disa
when the exchange field gets very large. This is seen in

FIG. 3. Normalized tunneling conductancesq(E) as a function
of E/D0 for x50 ~solid line!, x50.4 ~dotted line!, x50.8 ~dashed
line!, andx50.999~long-dashed line!, for different orientations~a!
z050, b50, ~b! z052.5, b50, ~c! z052.5, b5p/4. The pair-
ing symmetry of the superconductor isdx22y21 is with D15D0 ,
D250.3D0.
22450
e

n
-
n
n-
rs
e
le
et
le
n-
e
se
er
of

g
ear

g.

3~c!, for the (dx22y21 is)-wave pairing state, where as th
exchange fieldx increases the conductance peaks are redu
symmetrically. In thedx22y21 idxy a dip develops within the
subgap region as seen in Fig. 4~c!. The E50 value is more
sensitive to the exchange field~i.e., the Andreev-reflection
coefficient goes to zero faster! and the tunneling conductanc
for E50, is suppressed more easily as the exchange fi
increases. In both pairing states the reduction of the sub
conductance is symmetric since the density of states mo
lation within the subgap is not induced by spin-depend
effects, for example, a magnetic field. In that case we wo
expect an asymmetric evolution with the exchange fieldx
since the effect of the magnetic field depends on the spin
the incident quasiparticle. This has been obtained in Ref
where the tunneling conductance in a ferromagnet/insula
(dx22y21 is)-wave superconductor and also the effect of t
magnetic fieldH in a ferromagnet/insulator/(dx22y2)-wave
superconductor, is studied in order to identify the mechan
responsible for the splitting of the zero-energy conducta
peak in high-Tc superconductors. In the (dx22y21 is)-wave
state forz052.5, b50, andx50, as seen in Fig. 3~b! there
are no states within the subgap andsq(E) reduces to zero
there. In thedx22y21 idxy for z052.5, b50 as seen in Fig.
4~b! there are residual values within the subgap that are s

FIG. 4. The same as in Fig. 2. The pairing symmetry of t
superconductor isdx22y21 idxy , with D15D0 , D250.3D0.
2-4
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CHARGE CURRENT IN A FERROMAGNET- . . . PHYSICAL REVIEW B 64 224502
pressed asx gets larger. Forz050 the evolution of the pair-
ing state with the exchange field is similar in the two pairi
states as seen in Figs. 3~a! and 4~a!.

IV. SUPPRESSION OF THE BOUND-STATE ENERGIES

We examine the evolution of the bound states with
exchange fieldx. The equation giving the energy peak lev
is written as

f2f1* n1n2uE5Ep
51.0. ~17!

When this condition occurs the Andreev- and norm
reflection amplitudesa↑[↓] ,b↑[↓] for the spin-up ~-down!
quasiparticles are reduced to

a↑[↓]5
2n1l1

l11l2
, ~18!

b↑[↓]5
l12l2

l11l2
. ~19!

In Fig. 5~a! we plot the magnitude of the Andreev-reflectio
amplitude for spin-up ~-down! quasiparticle
Re(l2 /l1)ua↑[↓] u2 as a function of the exchange fieldx for
b5p/4, z052.5, for the (dx22y21 is)-wave case. The cor
responding magnitude of the normal-reflection amplitude
plotted in Fig. 5~b!. The energy is equal to the amplitude
the s-wave component (E50.3D0) for which bound states
are formed for 0,u,p/2, when the ferromagnet is norma
metal ~i.e., x50). For u5p/4,p/8, and x50, where l1

FIG. 5. ~a! The magnitude of the Andreev-reflection coefficie
Re(l2 /l1)ua↑[↓] u2 as a function of the exchange fieldx, for spin-up
~-down! quasiparticles, solid~dotted! line, for u5p/4 andu5p/8,
at the bound-state energyE50.3D0. The pairing symmetry of the
superconductor isdx22y21 is and b5p/4. ~b! The corresponding
magnitude of the normal-reflection coefficientub↑[↓] u2 as a function
of the exchange fieldx.
22450
e
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s

5l2, the Andreev-reflection coefficient is equal to 1, and t
normal-reflection coefficient is equal to zero, as obtain
from Eqs.~18! and~19!. In this case the conductance peak
due to the normal-state conductance in Eq.~14! that varies as
1/z0

2. As x increases the amplitude of the Andreev-reflecti
decays to zero at a critical valuexc that depends from the
angleu for which bound state occurs. The amplitude of t
normal reflection increases with the exchange field. The s
pression of the Andreev reflection amplitude withx, explains
the reduction of the conductance peaks asx increases. In the
space ofu,x the critical exchange fieldxc is defined from the
separating line between the VAR region and the AR region
Fig. 2. For trajectoriesu that correspond to bound states t
Andreev reflection vanishes within the VAR region. Th
critical exchange fieldxc is maximum (xc51) when the
bound state is atu50 and is reduced to zero asu moves
toward u56p/2. This is also seen in Figs. 5~a! and 5~b!
where for u5p/8, xc50.75, while for u5p/4, xc50.33.
For a given value of the exchange fieldx, a bound state atu
contributes to thes(E) only if x,xc(u). This means that as
x increases the range of bound states that contributes to
tunneling conductance is reduced and the peaks are
pressed.

In the (dx22y21 idxy)-wave case when the ferromagnet
a normal metal, (x50) the bound states occur for discre
values of the quasiparticle angleu, for fixedb. The Andreev-
reflection coefficient is equal to 1 for these values ofu.
When the exchange field increases the Andreev~normal-!-
reflection coefficient goes to zero~1! at a critical valuexc .
This is seen in Figs. 6~a! and 6~b! for two different pairs of
(E,u) for which bound state is formed forx50, i.e., (E

FIG. 6. The magnitude of the Andreev-reflection coefficie
Re(l2 /l1)ua↑[↓] u2 ~a! and normal-reflection coefficientub↑[↓] u2 ~b!
as a function of the exchange fieldx, for spin-up~-down! quasipar-
ticles, solid~dotted! line, for two pairs of (E,u), for which bound
states occur, i.e., (E50,u5p/4), and (E50.3D0 ,u50) in a super-
conductor with (dx22y21 idxy)-wave pairing, andb5p/4.
2-5
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N. STEFANAKIS PHYSICAL REVIEW B 64 224502
50,u5p/4) and (E50.3D0 ,u50).8 The critical value ofx
for which the Andreev-reflection coefficient goes to zero
independent from the pairing potential, and also from
energy of the bound state. It depends only on the angleu.
This is seen in Figs. 5 and 6, where foru5p/4 the critical
exchange field isxc50.33 for both pairing states and fo
different values of the bound-state energy, i.e.,E50.3D0 and
E50 correspondingly. The variation of the bound-state an
u with xc seen in Fig. 2 holds also for bound states in t
(dx22y21 idxy)-wave state, and can be used to explain
suppression of the tunneling conductance at zero energy
in Fig. 4~c! with the exchange fieldx as follows. ForE
50.3D0 a bound state exists atu508 for which xc'1 is
maximum. Forx,xc the incident electrons are Andree
reflected and the tunneling conductance has a finite va
The variation of the Andreev-reflection amplitude withx is
seen in Fig. 6~a!. For the same energy another bound st
exists atu5p/2, which does not contribute to the Andree
reflection sincexc is zero for this bound state. However, fo
E50 one bound state is formed for values ofu close to
2p/2 wherexc is close to zero and the Andreev reflectio
does not occur. The other bound state atE50 occurs foru
5p/4 and contributes to the Andreev reflection up tox
50.33, as seen in Fig. 6~a!. For x.0.33 the Andreev-
reflection amplitude is zero and also the tunneling cond
tance is suppressed. This is seen in Fig. 4~c! for E50 and
x50.4 ~dotted line!. Therefore the tunneling conductance
E50 decays to zero more rapidly withx than the conduc-
tance atE50.3D0. For a combination of (E,u) for which no
bound state is formed, the Andreev-reflection amplitude
suppressed for all values of the exchange interactionx indi-
cating that the exchange field mainly affects the bound sta

V. MAGNETIC-FIELD EFFECTS

In this section we describe the effect of the external m
netic field H in the spectra for different values of the e
change fieldx. We will see that since the effect of the ma
netic field depends on the spin, the evolution of the tunne
spectra withx is asymmetric. The tunneling conductance
given by

sq~E!5sq↑~E2mBH !1sq↓~E1mBH !. ~20!

In Figs. 7~a! and 7~b! the tunneling conductancesq(E) is
plotted for fixed magnetic fieldmBH/D050.2, and barrier
strengthz052.5, for different values of the exchange inte
action x. The pairing symmetry of the superconductor
dx22y21 is and dx22y21 idxy , respectively. The orientation
of the superconductor is chosen asb5p/4.

In the absence of the exchange interaction (x50) the
magnetic field splits symmetrically the tunneling spectru
that is a linear superposition of the spectra for spin
~-down! quasiparticles. The amplitude of the splitting d
pends linearly on the magnetic fieldH. For the case of
mBH/D050.2, seen in Fig. 7 the spin-up~-down! part of the
spectra partially overlap while for larger values of the ma
netic field the spin-up and -down branches are well se
22450
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rated. In the latter case the left~right! branch of the spectra
originates from spin-up~-down! quasiparticle spectrasq↑(E

2mBH)@sq↓(E1mBH)#.

For the (dx22y21 is)-wave case the condition for the for
mation of bound states is slightly modified under the pr
ence of magnetic field touE2mBHu5D2, for the spin-up
region, anduE1mBHu5D2, for the spin-down, from the cor
respondinguEu5D2 in the absence of any field. So the mu
tiplication of the (dx22y21 is)-wave pairing state and th
presence of magnetic-field results into the appearance of
peaks in the conductance spectra, which in the limit ox
50 have equal heights.

The main effect of the polarization is the imbalance in t
peak heights forE positive and negative. The ratio of th
peaks for positive and negative energy is proportional to
exchange field of the material. This can be extracted from
different evolution of the Andreev- and normal-reflection c
efficients for spin-up and -down quasiparticles with the e
change field seen in Figs. 5 and 6. Note that although
bound-state energies are modified in the presence of
magnetic field, the analysis concerning the above figures
holds for the modified energies. For a given energy and an
u for which bound state occurs the quantitiess̄q↑(E,u),
s̄q↓(E,u), have different values causing the asymmetricity
the peak heights for the spin-up and -down part of the sp
trum. The asymmetricity in the Andreev-reflection coef
cient can also be seen in Fig. 8~a!, for spin-up~-down! qua-
siparticles as solid~dotted! line, as a function of the energ

FIG. 7. Normalized tunneling conductancesq(E) as a function
of E/D0 for x50 ~solid line!, x50.2 ~dotted line!, x50.4 ~dashed
line!, andx50.999~long dashed line!, for z052.5, b5p/4, in the
presence of an external magnetic fieldmBH/D050.2. The pairing
symmetry of the superconductor is~a! dx22y21 is with D15D0 and
D250.3D0. ~b! dx22y21 idxy , with D15D0 andD250.3D0.
2-6
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E/D0 for fixed exchange fieldx50.6, and the pairing sym
metry of the superconductor isdx22y21 is. The same char-
acteristic appears in the normal-reflection coefficient tha
plotted in Fig. 8~b!. The peaks in the Andreev-reflection c
efficient are formed at the bound-state energies and du
the finite exchange interaction are suppressed from the
The same result is plotted in Figs. 9~a! and 9~b!, for the
(dx22y21 idxy)-wave pairing symmetry. Here the bound sta
is formed for a particular value ofu50. Other reasons fo
the asymmetricity of the spectra for the spin-up~-down! qua-
siparticle are the factorsP↑[↓] and q↑[↓] that appear in the
definition of the tunneling conductance, Eq.~12!.

VI. c-AXIS TUNNELING

In the preceding sections we discussed the tunneling
fect in two-dimensional models. In this section we discu
the tunneling effect along thec axis that takes into accoun
three-dimensional effects. A semi-infinite double-layer str
ture is assumed and the volume of the integration is take
the three-dimensional half sphere. The interface is perp
dicular to thez axis and is located atz50 as seen in Fig. 10
Suppose that an electron is injected from the ferromag
with polar angleu and azimuthal anglef. The electronlike
~holelike! quasiparticle will experience different pair pote
tials Drr8(u1) @Drr8(u2)#, where u15u and u25p2u,
and the quantitiesr,r8 denote spin indices. The coefficien
of the Andreev and normal reflection are obtained by solv
the BdG equations under the following boundary conditio

C~r !uz502
5C~r !uz501

, ~21!

FIG. 8. ~a! The magnitude of the Andreev-reflection coefficie
Re(l2 /l1)ua↑[↓] u2 as a function ofE/D0, for spin-up~-down! qua-
siparticles, solid~dotted! line, for u5p/8, for exchange fieldx
50.6, mBH/D050.2. The pairing symmetry of the superconduc
is dx22y21 is andb5p/4. ~b! The corresponding magnitude of th
normal-reflection coefficientub↑[↓] u2 as a function ofE/D0.
22450
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dC~r !

dz U
z502

5
dC~r !

dz U
z501

2
2mV

\2
C~r !U

z502

. ~22!

Using the obtained coefficients the tunneling conductanc
calculated using the formula given in the preceding sectio

sq↑[↓]
~E!5

1

RN
E

0

p/2E
0

2p

cosu sinus̄q↑[↓]

3~E,u,f!P↑[↓]q↑[↓]dudf, ~23!

FIG. 9. ~a! The magnitude of the Andreev-reflection coefficie
Re(l2 /l1)ua↑[↓] u2 as a function ofE/D0, for spin-up~-down! qua-
siparticles, solid~dotted! line, for u50, for exchange fieldx
50.6, mBH/D050.2. The pairing symmetry of the superconduct
is dx22y21 idxy , andb5p/4. ~b! The corresponding magnitude o
the normal-reflection coefficientub↑[↓] u2 as a function ofE/D0.

FIG. 10. The figure illustrates the transmission and reflect
processes of the quasiparticle at the interface of the junction w
xy plane interface.
2-7
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where

RN5E
0

p/2

sinu cosu@sN↑~u!P↑q↑1sN↓~u!P↓q↓#dudf,

~24!

sN↑[↓]
~u!5

4l1

~11l1!21z↑[↓]
2

. ~25!

The pairing potentials are given by
~a! In the (dx22y21 is)-wave case

D~u,f!5D1 cos 2f1 iD2. ~26!

~b! In the (dx22y21 idxy)-wave case

D~u,f!5D1 cos 2f1 iD2 sin 2f. ~27!

Figures 11~a! and 11~b! show the calculated conductanc
spectra for various exchange potentials. Unlike the c
where the interface is perpendicular to thex axis the tunnel-
ing spectra is similar for thedx22y21 is, dx22y21 idxy cases.
Also a subgap region is formed within the energy gap due
the nodeless form of the order parameter. The conducta
peaks are absent since the transmitted quasiparticles do

FIG. 11. Normalized tunneling conductancesq(E) as a function
of E/D0 for x50 ~solid line!, x50.4 ~dotted line!, x50.8 ~dashed
line!, andx50.999~long dashed line!, for z052.5. The interface is
perpendicular to thez axis. The pairing symmetry of the superco
ductor is ~a! dx22y21 is with D15D0 , D250.3D0. ~b! dx22y2

1 idxy with D15D0 , D250.3D0.
22450
e
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feel a sign change of the pair potential on the Fermi surfa
The case ofc-axis tunneling has been treated experimenta
using scanning tunneling microscopy or point contact sp
troscopy, for the case of normal metal/superconduc
junction.17,18 No zero energy peak and a clear V-like lin
shape for thec-axis tunneling conductance has been o
served. The calculated spectra for thedx22y21 is, dx22y2

1 idxy states is flattened out forE,D2 that contradicts the
experimental data. The (dx22y2)-wave order parameter doe
not change sign and is not suppressed at thec-axis surface.
So the attractive interaction in the subdominant pairing ch
nel is small relative to the dominant and a transition to a s
breakingT does not happen. On the other hand, a mix
order parameter such as thedx22y21s may exist due to the
orthorhombic distortion of the lattice, as seen in thec-axis
Josephson experiments.

VII. CONCLUSIONS

We calculated the tunneling conductance in ferromagn
insulator/superconductor, junction using the BTK formalis
We assumed two possible pairing potentials for the superc
ductor that break the time-reversal symmetry, i.e.,dx22y2

1 is, dx22y21 idxy . The evolution of the spectra with th
exchange field is the same forz050 but different in the
tunneling limit wherez0 is large, and can be considered as
probe for time-reversal symmetry broken pairing states. T
weak Andreev reflection within the ferromagnet results in
suppression of the tunneling conductance and eliminates
resonances due to the anisotropy of the pair potential.
evolution of the tunneling conductance within the gap
symmetric since the splitting is not induced from spi
dependent effects, for example, a magnetic field, but fr
the nodeless form of the pairing potential.

We also derived that the condition for a bound state
angleu to contribute to the Andreev-reflection and hence
the tunneling conductance, for a given value of the excha
interactionx is x,xc . xc is the critical exchange field fo
which the Andreev-refletion coefficient goes to zero and
given from the separating line between the VAR region a
the AR region in the space ofu,x. This condition was used to
explain the suppression of the conductance aroundE50
with the exchange field in the (dx22y21 idxy)-wave state.

The magnetic field splits linearly the tunneling spect
and the exchange potential induces an imbalance in the p
heights for positive and negative energies. The asymme
ity in the peak heights originates from the different evoluti
of the Andreev- and normal-reflection amplitudes at t
bound-state energies with the exchange field.

The c-axis tunneling from ferromagnet to superconduc
does not show any differences betweenT-broken pairing
states since the transmitted quasiparticles experience
same sign of the pairing potential.

Throughout this paper the order parameter is not ca
lated self-consistently. However, since the characteristics
the tunneling conductance depend mainly from the ang
part of the pairing potential, the essential results are expe
to change only quantitatively when the suppression of
order parameter near the surface is taken into account.
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