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Abstract
The critical current in Josephson junctions of conventional superconductors
with macroscopic defects is calculated for different defect critical current
densities as a function of the magnetic field. We also study the evolution of
the different modes with the defect position, at zero external field. We study
the stability of the solutions and derive simple arguments, that could help the
defect characterization. In most cases a re-entrant behaviour is seen, where
both a maximum and a minimum current exist.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

The interaction of localized magnetic flux (fluxons) with
defects (natural or artificial) or impurities in superconductors
or junctions has important effects on the properties of bulk
superconductors or the behaviour of Josephson junctions,
respectively [1]. The flux trapping from defects, which is
of major importance in Josephson junctions [2], can modify
the properties of polycrystalline materials with physical
dislocations, for example grain boundary junctions [3].
In this category one can also consider grain boundary
junctions in YBa2Cu3O7 [4] where the tunnelling current is
a strongly varying function along the boundary. This strong
inhomogeneity makes them good candidates for SQUID-
type structures [5]. Phenomenologically the current–voltage
(I–V ) characteristics of grain boundary junctions are well
described [6] by the resistively shunted junction model [7].
The grain boundary lines often tend to curve, while the junction
is very inhomogeneous and contains non-superconducting
impurities and facets of different length scales [8, 9]. The
linear increase in the critical current with length in grain
boundary junctions of high-Tc superconductors, which is a
different behaviour from the saturation of the inline geometry
of a perfect junction, can be explained by the presence of
impurities [10]. Therefore it is interesting to study flux
trapping in impurities, especially when it can be controlled.
Modern fabrication techniques can, with relative ease, engineer
any defect configuration in an extremely controlled way.

In bulk materials there are several types of defects
that can influence the critical current in high-temperature
superconductors, such as YBa2Cu3Ox type materials. They
include 3D inclusions, 2D grain boundaries and twin
boundaries, and point defects such as dopant substitutions

or oxygen vacancies [1]. For example, the homogeneous
precipitation of fine Y2BaCuO5 non-superconducting particles
in the melt processing of YBa2Cu3Ox leads to high Jc values
due to particle pinning centres [11]. Similar behaviour is
observed in NdBa2Cu3Ox bulk crystals with Nd4Ba2Cu2O10

particles [12]. The case of the peak effect in twin-free Y123
with oxygen deficiency is also of interest. In this case, one sees
a linear increase (peak effect) of the critical current at small
magnetic fields, when growth is under oxygen reduction [13].
For the fully oxidized crystal one expects a decrease. The
peak effect is attributed to flux trapping. Information on the
defect density and activation energies can also be obtained
from the I–V characteristics, as was the case for several types
of defects which were also compared to Au+ irradiated samples
with artificial columnar defects [14]. These columnar defects
also act to trap flux lines in an YBCO film, which is considered
as a network of intergrain Josephson junctions modulated by
the defects. In this case, assuming a distribution of contact
lengths, one finds a plateau in the curve of the critical current
density against the logarithm of the field [15].

The study of the long size of impurities is going to give
information beyond the theories which concern the small
amplitude of inhomogeneities [16]. Also, it is possible to
directly compare the numerical results with experiments in
long junctions obtained with electron beam lithography [17].
This is a powerful technique which allows the preparation and
control of arrays of pinning centres. Another method is ionic
irradiation, which produces a particular kind of disordered
array, consisting of nanosized columnar defects [14, 18]. The
variation of the critical current density can also occur due to
temperature gradients [19].

The activity in an area of high critical current densities
in the presence of a magnetic field is hampered by defects

0953-2048/01/010016+14$30.00 © 2001 IOP Publishing Ltd Printed in the UK 16



Critical currents in Josephson junctions with macroscopic defects

due to the difficulty of having a high quality junction with
a very thin intermediate layer. Thus significant activity has
been devoted to this area, since, for example, the energy
resolution of the SQUID [20] and the maximum operating
frequency of the single-flux quantum logic circuit [21], to
name two applications, depend, respectively, inversely and
directly on the plasma frequency ωp, with ωp ∼ J

1/2
c . The

fundamental response frequency of Josephson devices, the
Josephson frequency ωJ , also depends on the critical current
density. On the other hand, a drawback is that high critical
current densities lead to large subgap leakage currents [22]
and junction characteristics degrade rapidly with increasing
Jc.

Variations in the critical current density also influence the
I–V characteristics introducing steps under the influence of
both a static bias current and irradiation with microwaves [23].
In that case the variation is quite smooth (of sech type), so
that the fluxon and its motion can be described by a small
number of collective coordinates. Interesting behaviour is also
seen in both the static and dynamic properties for the case of
a spatially modulated Jc with the existence of ‘supersoliton’
excitations [24, 25] and the case of columnar defects [26, 27]
or disordered defects [10].

The trapping of fluxons can be seen in the Imax(H) curves
where we also expect important hysteresis phenomena when
scanning the external magnetic field. The hysteresis can be due
to two reasons: (i) one is due to the non-monotonic relation
between the flux and the external magnetic field [28] arising
from the induced internal currents, and (ii) the other is from
the trapping or detrapping of fluxons by defects. The effect
of a defect on a fluxon and the strength of the depinning
field depends strongly in the size of the defect, the type of
defect and the position of the defect. Here we will consider
the case where the widths of the defects is of the order of
the Josephson penetration depth. In this range we expect the
strongest coupling to be between fluxons and defects. We will
also consider the case of a few defects in the low magnetic field
region where pinning and coercive effects are important.

The organization of the paper is as follows. In section 2
the sine-Gordon model for a Josephson junction is presented.
In section 3 we present the results of the critical current Imax
against the magnetic field of a junction with an asymmetrically
positioned defect. The variation of the Imax and the flux
content, Nf , with the defect critical current density and
position are presented in sections 4 and 5, respectively. The
effect of multiple pinning centres is examined in sections 6
and 7. In section 8 we examine a defect with a smooth variation
of the critical current density. In the last section we summarize
our results.

2. The junction geometry

The electrodynamics of a long Josephson junction is
characterized from the phase difference φ(x) of the order
parameter in the two superconducting regions. The spatial
variation of φ(x) induces a local magnetic field given by the
expression

H(x) = dφ(x)

dx
(1)

D

I 

I 

x

z

x=0 x=L

Figure 1. The geometry of the junction. The dark shaded region
marks the defect in the intermediate layer. � is the junction length
and D is the separation between the left-hand edges of the defect
and the junction.

in units ofH0 = �0/(2πdλJ )where�0 is the quantum of flux,
d is the magnetic thickness and λJ is the Josephson penetration
depth. The magnetic thickness is given by d = 2λL + t where
λL is the London penetration depth in the two superconductors
and t is the oxide layer thickness. The λJ is also taken as
the unit of length. The current transport across the junction is
taken to be along the z-direction. We describe a 1D junction
(shown in figure 1) with width w (normalized to λJ ) in the
y-direction, small compared to unity. The normalized length
in the x-direction is �. The superconducting phase difference
φ(x) across the defected junction is then the solution of the
sine-Gordon equation

d2φ(x)

dx2
= J̃c(x) sin[φ(x)] (2)

with the inline boundary condition

dφ

dx

∣∣∣∣
x=±�/2

= ±I
2

+H (3)

where I and H are the normalized bias current and external
magnetic field. J̃c(x) is the local critical current density, which
is J̃c = 1 in the homogeneous part of the junction and J̃c = jd
in the defect. Thus the spatially varying critical current density
is normalized to its value in the undefective part of the junction
J0 and the λJ used above is given by

λJ =
√

�0

2πµ0dJ0

whereµ0 is the free space magnetic permeability. One can also
define a spatially-dependent Josephson penetration depth by
introducing J̃c(x) instead of J0. This is a more useful quantity
in the case of weak distributed defects.

In the case of overlap boundary conditions equations (2)
and (3) are modified:

d2φ(x)

dx2
= J̃c(x) sin[φ(x)] − I (4)

and
dφ

dx

∣∣∣∣
x=±�/2

= H. (5)

We can classify the different solutions obtained from (2)
with their magnetic flux content

Nf = 1

2π
(φR − φL) (6)
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in units of�0, whereφR(L) is the value ofφ(x) at the right(left)-
hand edge of the junction. Knowing the magnetic flux one can
also obtain the magnetization from

M = 2π

�
Nf −H. (7)

For a perfect junction, a quantity of interest is the critical
magnetic field for flux penetration from the edges, denoted
by Hc1. For a long junction it is equal to two, while for a
short junction it depends on the junction length. Due to the
existence of a defect this value can be modified, since we have
the possibility of trapping at defects. For a short junction we
have penetration of the external field in the junction length, so
that the magnetization approaches zero. For a long junction it
is a non-monotonic function of the external field H .

To check the stability we consider small perturbations
u(x, t) = v(x) est on the static solution φ(x), and linearize
the time-dependent sine-Gordon equation to obtain

d2v(x)

dx2
− J̃c(x) cosφ(x)v(x) = λv(x) (8)

under the boundary conditions

dv(x)

dx

∣∣∣∣
x=±�/2

= 0

where λ = −s2. It is seen that if the eigenvalue equation has a
negative eigenvalue, the static solution φ(x) is unstable. There
is considerable eigenvalue crossing so that we must monitor
several low eigenvalues. This is especially true near the onset
of instabilities.

3. Asymmetric defect

In the following we will consider the variation of the maximum
critical current as a function of the magnetic field for several
defect structures. We start with a long (L > λJ ) junction of
normalized length � = 10 with a defect of length d = 2 which
is placedD = 1.4 from the right-hand edge. Thus the defect is
of the order of λJ . We plot in figure 2(a) the maximum critical
current Imax variation with the magnetic field. The different
curves correspond to phase distributions for which we have a
maximum current at a given value of the magnetic fieldH . The
overlapping curves, called modes, have different flux content
as seen in figure 2(b) where we plot the magnetic flux in units
of�0 for zero current against the external field. The magnetic
flux is only a weak function of the external current.

For the perfect junction there is no overlap in the magnetic
flux between the different modes. In fact, each mode has a flux
content between n�0 and (n + 1)�0 and is therefore labelled
the (n, n + 1) mode [28]. Here, in the case of the defect, the
range (at zero current) of flux for each mode can be quite
different and the labelling is with a single index n = 0, 1, 2, . . .
corresponding, in several cases, to the (0, 1), (1, 2), (2, 3), . . .
modes of the perfect junction. There are, in several cases,
several modes with similar fluxes. To distinguish them we add
a letter following the index n.

The maximum Imax is obtained for mode 1 and the increase
comes from the trapping of flux by the defect. We have to note
that the (d, e) part of this mode is a continuation of the (a, b)

�

Figure 2. (a) Critical current Imax and (b) magnetic flux at zero
current plotted against the magnetic field H , for the different modes;
� = 10 and D = 1.4. (c) The evolution of the lowest eigenvalue λ1

with the external field for the different modes. At the extremes of
each mode λ1 vanishes.

part of mode 0. In both cases we have an entrance of the flux
from the defect-free part of the junction and the instability in
the critical current occurs when φ(−�/2) = π . Here, and in
the following, we will take this to mean equal to π modulo
2π . For the maximum current (at H < 0) the equation is
H − I/2 = −2. This can be understood from the pendulum
phase diagram, where the φx = −2 is the extremum slope, and
thus the relation Imax = 4 + 2H holds. For the (b, c) part of
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mode 0 the flux enters from the right, where the defect is. This
reduces the critical current compared to the perfect junction
0 mode [28, 29]. Note that the 0 mode has its critical current
Imax peak slightly to the left of H = 0 in the Imax against
H diagram, and to the left of Nf = 0 in an Imax against Nf
diagram (see figure 11(a) below). Also, in the absence of
current, reversing the direction of H only changes the sign of
the slope dφ/dx, but the phase difference (in absolute values)
at the two ends will be the same. Thus the zero mode at I = 0
extends for −1.6 � H � 1.6. This is not clearly seen due to
curve overlapping in the left-hand side. Comparing the Imax
for the modes 1 and −1 we see that Imax(1) > Imax(−1). In
both cases a fluxon (or antifluxon) is trapped in the defect.
The major difference in the Imax comes mainly from the phase
distribution which in the mode 1 case leads to a large positive
net current in the defect-free side, while in the −1 mode the
net current in the defect-free side is very small.

For the mode 1, at H ≈ 0 and zero current the instability
happens due to the competition of the slope of the phase at
the defect centre and at the right-hand edge, while at the other
end at H = 2, the field at the defect centre becomes equal
to the external field applied at the boundaries and there is no
such competition. In this case the instability sets in due to
the critical value of the phase at the defect-free boundary (i.e.
φx(−�/2) = 2). The situation is analogous for mode −1.
For H ≈ 0 the instability sets in due to the depinning of
the antifluxon while for H = −2 this is due to the critical
value of the phase at the defect-free part of the junction. For
mode 0 we have no fluxon trapping at the defect, even though
the instability at the two extremes with H = ±1.6 at zero
current is caused by the tendency to trap a fluxon or antifluxon,
respectively, at the defect. At higher values of the magnetic
field (|H | > 1.6) we have stability for a range of non-vanishing
current values as will be discussed below. Thus this value
can be considered as the minimum value for the introduction
of fluxons in the junction. Let us remark that for the perfect
junction, or a junction with a centred defect, the corresponding
values for fluxon introduction would be equal to two. Thus
there is a decrease of the critical field as the defect moves
away from the centre. For the 0 mode a centred defect would
have no influence on the solution.

The results for the maximum current are in agreement
with the stability analysis. In figure 2(c) we present the lowest
eigenvalue λ1 for the different modes in a zero external current,
I = 0, as a function of the magnetic field H . The sudden
change in slope for the modes −1 and 1 is because at that
point a new eigenvalue becomes lower. The λ1 is positive
denoting stability and becomes zero at the critical value of
the magnetic field, where a mode terminates. The symmetry
about zero magnetic field is due to the symmetric boundary
conditions for I = 0. The change of the sign of H changes
the sign of the phase distribution, but the cosφ in (8) remains
unchanged. This symmetry is lost when a finite current is also
applied. Also, there are solutions (not presented in the figure)
for which the stability analysis gives negative eigenvalues, i.e.
instability. These solutions may be stabilized when we insert
multiple impurities.

In figure 3(a) we specifically draw only the 1 mode, to be
discussed in more detail. Here we changed the procedure in
searching for the maximum current. Up to now we followed

Figure 3. (a) Critical values of the bias current as a function of the
magnetic field. The full curve is drawn for mode 1 obtained with the
usual procedure starting form zero current and increasing the current
to the critical value, while the broken curve represents the values
obtained with the re-entrant procedure described in the text. (b) The
same as in (a), but for mode 0.

the standard experimental procedure, i.e. we scan the magnetic
field and for each value ofH we increase the current I , starting
from I = 0, until we reach the maximum current. Here
we consider the possibility that for I > 0 there is also a
lower bound in the value of the current for some values of
the magnetic field. This requires a search where we vary both
H and I simultaneously. Thus we see that forH < 0 there is a
lower bound, given approximately by the line H + I/2 ≈ Hcl
where Hcl ≈ 0 is the critical value of H at I = 0, for which
we have depinning of the trapped fluxon. Over this curve the
slope φx at the right end (near defect) is kept constant and
equal to Hcl and above this line the fluxon remains pinned
and it should be stable. This line ends at H = −1, since
in that case the extremum value φx = −2 is reached at the
left end. Increasing now in that range of H the bias current
we find that also the upper bound of the bias current versus the
magnetic field curve, obtained with the standard procedure (full
curve), extends further to the left. The equation for this line is
approximately given by H − I/2 = −2, with an extremum at
φx(−�/2) = −2. Thus the instability on this line arises from
the left side (far from the defect). It extends up toH = −1 for
a long junction and joins the other line H + I/2 = Hcl .

The above calculations were performed for a long junction
so that the fields at the two ends do not interfere. For shorter
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lengths, however, the two ends feel each other and in such
a case the two instabilities are not independent. This means
that the tail of the defect-free side field will compete with the
slope of the trapped field. Then the two lines, H + I/2 = Hcl
and H − I/2 = −2, end before they meet (at H ≈ −1) at
a cut-off magnetic field. Also, for short junctions we expect
that the lines have some curvature. A similar discussion holds
for the right end of the 1 mode. Again there is a lower
current (positive) bound given by H − I/2 = 2 due to the
instability at the left end (φx(−�/2) = 2), and an upper
bound given by H + I/2 = Hcr , where Hcr ≈ 2.8, due to
fluxon depinning. On the same diagram, we show the lower
bound for negative currents. Thus we see that there is strong
asymmetry for positive and negative currents. We remark that
for negative currents, mode 1 is very similar to mode (1, 2)
with no defect [28]. This is because the right-hand boundary
is determined by an instability at the defect-free side. The
left-hand boundary is again very close because Hcl ≈ 0. So
an interesting effect of the defect is that we have this strong
asymmetry for positive and negative currents.

We would obtain a similar picture if we considered the
−1 mode. In fact we obtain the same curves (as for mode 1)
if we put I → −I and H → −H . This is consistent with
the −1 mode shown in figure 2(a). The discussion can also be
extended to the other modes. In figure 3(b) we show the result
of a similar scan for the 0 mode, but for the sake of brevity we
will not discuss the −1,−2 and 2 modes. In any case, when
the number of fluxons increases one must rely on numerical
calculations rather than simple arguments.

4. Variation with the defect critical current

In the previous section we considered the case of a
microresistance defect. With present-day masking techniques
we can also consider any finite critical current (lower or higher)
in the defect. This situation very often arises in junctions with
high critical current densities, where small variations in the
thickness can create strong critical current density variations.
Thus for the previous asymmetric defect configurations we
will study the effect of the defect critical current density in the
magnetic interference pattern Imax(H). We will concentrate
on the 0 and 1 modes.

(i) Mode 0. In figure 4 we see the Imax(H) variation for
mode 0 for decreasing values of the defect critical current
density from jd = 2 to jd = 0. Let us discuss first the
case for jd � 1. For the perfect junction, where jd = 1, we
have a symmetric distribution about H = 0. As we decrease
jd the flux content of this mode (and the extremum H ) is
symmetrically reduced (see figure 2(b)). It is not apparent from
the figure, due to the superposition of several curves on the
left-hand side of the diagram, but as expected the range of the
magnetic field is symmetric aboutH = 0 at zero current. The
corresponding Imax(H) curves, however, are not symmetric.
The right-hand side of the curves is displaced towards smaller
critical fields with decreasing jd . This means that the critical
field at I = 0 required to introduce a fluxon from the ends
decreases due to the existence of the defect, which acts with
an attractive force on the fluxon. The curves are linear and can
be approximated by the equation I (H) = 4 − 2(H + δHc),
where δHc is the decrease in the critical fieldHc0 and depends

Figure 4. Critical current as a function of the magnetic field, for
mode 0, for different values of the defect critical current density jd .

on jd . A similar decrease happens for negative magnetic fields
where the defect tries to pin an antifluxon. Even for higher
currents the right-hand side critical field is determined by
the tendency of the defect to attract a fluxon. The left-hand
side, however, remains rigid (but is shifted along the line).
This is due to the entrance of magnetic flux from that part of
the junction where there is no defect. The instability in the
critical current occurs when φ(−�/2) = π for every value of
jd . From the pendulum phase diagram, which is the classical
analogue of the Josephson junction, the extremum occurs at
∂xφ(−�/2) = −2, or H − I/2 = −2, which is the equation
for this triangular side. At near zero current the critical field
is influenced by the attractive action of the defect. At low
currents and extreme negative magnetic fields the Imax curve
shows a re-entrance behaviour so that it is not stable at low
and high currents, but only for a finite intermediate range of
current values. This way we reconcile the different origins of
the instability mechanisms φ(−l/2) = π at high currents and
the defect influence discussed for the right-hand side of the
mode.

For jd > 1 we see an increase in the Imax , while the
critical magnetic field at I = 0 remains almost constant at
about Hcr ≈ 1.9. The instability at that point is due to the
trapping of flux in the region between the positive defect and the
right-hand edge of the junction. The field for this is expected
to be nearH = 2 if the right-hand defect-free part is of a length
of the order of the Josephson length. Thus it is the same value
for flux penetration from the perfect junction edges. It will
vary weakly with jd .

(ii) Mode 1. Mode 1 in the perfect junction has a full
fluxon for a magnetic field H = 0.07. The phase distribution
is about θ = π where the energy has a minimum. At the
end of this mode at H = 2.07, where two fluxons have
entered the junction, the phase changes from φ(−�/2) = −π
to φ(�/2) = 3π . When the defect is inserted this mode is
significantly modified due to the flux trapping in the defect.

In figure 5 we see the magnetic interference pattern for this
mode for different values of the defect critical current density.
For 0 < jd < 0.7 the Imax against H curves are displaced
downwards, and a fluxon is trapped in the defect. We notice
that all the curves for jd < 0.7 have the same critical magnetic
field H = 2 for I = 0. This is because, at this end of the
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Figure 5. Same as in figure 4, but for mode 1.

�

Figure 6. The lowest eigenvalue plotted against the magnetic field
for mode 1 for different values of the defect critical current
density jd .

mode, at I = 0 the instability arises at the side with no defect
where the phase reaches the critical value φ = π (modulo
2π ). Of course, as discussed in the previous section, we have
a re-entrant behaviour above H = 2. At the other end, for a
small magnetic field the instability is due to the depinning of
the trapped fluxon. For 0.7 < jd � 1.0 the defect can trap the
flux only for H < Hcd , where the value of the Hcd depends
on the defect critical current jd ; in figure 5 it is shown for
jd = 0.9. Notice that for this value of jd the fluxon is very
weakly trapped, and the untrapping process happens slowly
over a range of magnetic field values. ForH > Hcd the fluxon
has moved away from the defect, and for this weak defect the
junction does not feel it. The critical current goes abruptly
close to the curve for the perfect junction. We conclude that
the behaviour of the junction for values of jd close to jd = 1
is determined by the ability of the defect to trap one fluxon.
This can also be seen from the change in the lowest eigenvalue
variation with the external field H , at values of the critical
density jd > 0.7, in figure 6.

For jd > 1 (fine lines in figure 5) the Imax(H) curve has
a similar form as for jd = 1, i.e. there is no fluxon trapping.
Again, as in the 0 mode, theHcr at I = 0 stays around 2.0 and
is again due to the trapping of flux in the right-hand edge.

Figure 7. Critical current plotted against the defect critical current
density jd , for a magnetic field equal to H = 1.5 and for mode 1. In
the same figure the magnetic flux at zero and maximum current and
the lowest eigenvalue at I = 0 are plotted as a function of jd .

In figure 7 we present the evolution of Imax with the defect
critical current density jd for a magnetic field H = 1.5. For
this value of the magnetic field there are no solutions with
trapped fluxons for jd > 0.83. The lowest eigenvalue at I = 0
becomes zero at this point. For jd > 0.83 and H > 1.5 there
are solutions which are not trapped. For these solutions the
maximum current coincides with that of the perfect junction
and there is a discontinuity in the curves. Notice the point at
jd = 1.0. In the same figure we also show the magnetic flux at
I = 0 and at Imax , which is almost constant as a function of jd
as expected, with a small difference between the two different
current curves.

5. Variation with the defect position

In figure 8(a) we see the evolution of the critical current at
zero magnetic field as we move the defect from the right-hand
edge of the junction, D = 0, to the left-hand edge, D = 8.
The position is measured from the edge of the junction to the
nearest edge of the defect. We examine the several modes
separately.

(i) Mode 0. For this mode and for I = 0, we are able to
find solutions for all the defect positions. As we can see in
figure 8(b), the corresponding magnetic flux at Imax is slowly
changing and equal to zero when the defect is in the junction
centre; but when the defect is placed close to the ends the
magnetic flux at the maximum current deviates from zero. The
critical current for this mode is symmetric for defect positions
about the junction centre, and has its maximum value when the
defect is at the centre. This is because at that position it does
not influence the solution at the edges, which is very close to
the defect-free case, while near the centre the phase is almost
zero. However, when the defect comes close to the junction
ends the defect cuts into the area in which the current flows,
and the critical current is reduced.

For even smaller distances, D = 0.2 and D = 0, there
is a jump to solutions which correspond to a current which
is much higher than that of the 0 mode for nearby D values.
This is because the defect cuts negative current regions and
for this position we have an increase of the critical current. In
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Figure 8. The variation of (a) the maximum current Imax and (b) the
magnetic flux Nf at the maximum current plotted against the defect
position, D, measured from the right-hand edge of the junction, for
modes 0, 1, −1. The crosses and stars are continuations of the two
points at the two ends of the graph. (c) The corresponding lowest
eigenvalue at zero current plotted against the defect position, D, for
modes 0, 1. The −1 mode eigenvalue is the same as for the 1 mode.

fact, these solutions (see the + symbols in figure 8(a)) are very
close to the solutions of a perfect junction within the defect-
free area, except that now the defect at the edge can give a
contribution to the flux, but no contribution to the current.
Thus the flux is much higher than that of the 0 mode and it
approaches that of mode 1. Nevertheless, these points should
be considered as a separate mode. In fact they are part of a

branch (crosses). At these distances there are no other modes
for H = 0. Similar results were obtained by Chow et al [30]
where they attributed this enhancement in the Imax for small
distances to a self-field which was generated by the current,
penetrating into the defect and resisted any further penetration
of field. To overcome this resistance it was necessary to apply
a higher current. However, they do not distinguish between
modes with different flux content, and their evolution with the
defect position.

(ii) Modes 1, −1. For these modes we do not have
solutions for all the defect positions at I = 0 and H = 0,
but only in the range 1.4 < D < 6.6, as seen in figure 8(c),
where the lowest eigenvalue is plotted as a function of the
defect position for the different modes. The curves for the 1
and −1 modes coincide, while the 0 mode shows a change
of slope corresponding to the last two points (D = 0 and 0.2
discussed above) which belong to another curve. Mode −1 has
a trapped antifluxon in the defect. When the defect is to the left
(4.0 < D < 6.5), then the instability in the current of mode
−1 atH = 0 is created at the right end of the junction when the
phase reaches the critical value φ(l/2) = π . This instability
occurs for currents which are less than those necessary to unpin
the antifluxon. Notice that on increasing the current there is
no competition with the slope of the antifluxon trapped in the
left end. Thus at this point (for 4.0 < D < 6.5) the maximum
current is very close to the defect-free junction mode 0, except
that in this caseNf ≈ −1 is close to an antifluxon. At the other
end (D < 4.0) the instability for mode −1 is caused by the
depinning action of the applied current, which now takes much
smaller values (close to zero) because of competition with the
pinned fluxon. The phase distribution at the defect-free end is
that expected for H = 0 and I close to zero. Mode 1 with a
trapped fluxon has a reflection symmetry (about the centre) in
the Imax againstD curve and the instability forD > 4.0 occurs
at the left end of the junction, which is the opposite case to mode
−1. The eigenvalue becomes zero at the positions D = 1.4
andD = 6.6. Theλ1(D) curve coincides with modes 1 and −1
due to the fact that the phase distributions for the same D for
these modes are symmetric about x = L/2, and the cosφ(x)
that enters the eigenvalue equation is the same.

In the remainder of this paper we examine the variation
of the critical value at which the instability sets in, as we
scan the magnetic field in the positive (negative) direction
Hcr(Hcl) for zero current, for the different modes, as a function
of defect position. This instability can be attributed to the
pinning or depinning field or to the critical value of dφ/dx
at the defect-free edge, depending on the particular mode that
we are considering. Explicitly, for the mode 0 the instability
in the Hcl(Hcr) is due to the pinning of a fluxon (antifluxon).
In this mode the defect has no influence for positions close
to the centre, as seen in figures 9(a) and 9(b). However,
as we move the defect close to the edges the pinning field
Hcl(Hcr) is reduced in absolute value because it is easier to
trap a fluxon (antifluxon). For mode 1, the Hcr is constant for
all defect positions. This is due to the fact that at I = 0 it
is the phase distribution at the defect-free edge of the junction
that determines the instability. Notice that due to the re-entrant
character the critical magnetic field takes higher values at larger
bias currents, which vary with defect position. The Hcl curve
depends on the phase distribution near the defect and therefore
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Figure 9. (a) The critical value of the instability as we scan the
magnetic field to the right Hcr as a function of the defect position D,
for the modes 0, 1, −1. (b) The same as (a) but to the left, for the
Hcl .

is strongly defect position dependent. For mode−1, the picture
is reversed compared with the 1 mode. In this case the Hcl is
constant while the Hcr varies with position. Note that in this
mode the depinning of an antifluxon is the reason that causes
the instability at Hcr .

6. Two symmetric pinning centres

As noted, defects (with jd < 1) or inhomogeneities in the
junction can play the role of pinning centres for a fluxon. In
this section we discuss more precisely the effect of multiple
pinning centres on the magnetic interference patterns Imax(H)
and the flux distribution. The pinning effect of the Josephson
junction has also been analysed in [31, 32], by using a simple
mechanical analogue. The analogies of the mixed state of
type II superconductors and the vortex state of the Josephson
junction were discussed in these references. In figure 10(a) we
present, as an example, the critical current Imax plotted against
the magnetic field for a junction which contains two defects
of length d = 2 placed symmetrically at a distance D = 2
from the junction’s edges. We examine the following modes
grouped according to flux content.

(i) Modes 0, 0a. These modes have magnetic flux
antisymmetrical around zero field, as seen from figure 10(b)
where the magnetic flux is plotted against the magnetic field.

Figure 10. (a) Critical current Imax and (b) magnetic flux Nf plotted
against the magnetic field H , for the different modes and for a
junction of length � = 10, which contains two symmetric pinning
centres of length d = 2.

At I = 0 and magnetic fieldH = −0.7, the 0a mode contains
one fluxon trapped in the left-hand defect, while an antifluxon
exists at the other part of the junction. AsH increases towards
0.7 the picture changes slowly, so that the antifluxon is pinned
in the right-hand defect. The stability analysis shows that this
mode is unstable. We remark that there are also other unstable
modes near zero flux, which we will not present here. For
example, there is another unstable mode with the same flux
as 0a, but a much higher critical current (the same as the 0
mode). Mode 0 has phase distributions which are similar to
the corresponding mode of the homogeneous junction since it
has no trapped flux in each defect.

(ii) Modes 1l, 1r. These modes have magnetic flux close
to unity, and are both stable. For mode 1r one fluxon has been
trapped in the right-hand defect, and in mode 1l the vortex is
trapped in the left-hand defect. Due to the symmetry this mode
has the same magnetization as mode 1r , but the critical current
is reduced. The phase distributions for modes 1r and 1l at zero
current are related by φ1l(x) = 2π −φ1r (−x). The maximum
field, H = 1.9 (at I = 0), for both modes is determined by an
instability at the fluxon-free side. At the other extreme there
is a competition at the fluxon side between the applied field
and the field created by the pinned fluxon. Thus the critical
field at H = −0.62 can be considered as a coercive field and
below this value the fluxon is unpinned. The two modes have
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characteristically different currents and this depends on the
current through the fluxon-free defect, since the pinned fluxon
itself gives no major contribution. Thus the maximum current
is much larger for the 1r mode. The opposite would be true
if we look for negative currents. There are also symmetrically
situated modes that correspond to an antifluxon in the left-hand
or right-hand defects, which are not shown in figure 10(a). The
respective flux is antisymmetric with H around H = 0.

In figure 10(a) we also show mode 2 with flux around two
fluxons. Several unstable modes are not shown, for the sake
of clarity. Their analysis, however, can show the connection
between different modes, while a defect in the correct place
with proper characteristics can stabilize these solutions. We
conclude that depending on the positions where the vortex
is trapped we may have modes with the same magnetic flux
content, but different critical currents. Also, due to soliton
localization on the defects, we may have stable states with
magnetic flux close to unity, for zero magnetic field. These
states together with the one existing in the homogeneous
junction form a collection of stable states in a largeH interval.
We must comment here that states with unit flux, for zero
magnetic field (H = 0), exist in the homogeneous junction
as a continuation of the stable 1 mode to negative magnetic
fields, but, as we found in a previous work [28], are unstable.
So we may argue here that the presence of defects stabilizes
these states.

In comparing the results for one (figure 2(a)) and two
defects (figure 10(a)) we see some similarities and differences.
In the case of two defects new modes appear, but, also, the
region of stability of the equivalent modes is different. This is
more clearly seen in figure 11 where we plot Imax againstNf for
both cases. This presentation is useful since Nf is a nonlinear
function of H . This plot (figure 11(a)) is a combination of
figures 2(a) and 2(b). We should point out that the maximum
peak in the current in both cases is due to the trapping of a
fluxon in the defect at the right-hand side. The maximum of
the 0 mode is very close in both cases and this happens because
this mode does not involve fluxon trapping. The 1r mode for
the two-defect case is very close to the 1 mode of the single-
defect case, since in both cases there is a fluxon trapped on
the same side. In the two-defect case we see an enlargement
of the region of stability, so that the modes overlap. The thin
continuation lines in modes 0 and 1 for the single defect are in
the re-entrant region of flux as discussed in section 2.

7. Symmetric distribution of pinning centres

In this section we study, as an example, the case where a
junction of length � = 14.2 contains three defects of length
d = 2, and the distance between them is 2. The length was
augmented, so that the defects keep the same width when
we increase the number of defects, since we saw that width
of the order d = 2 gives the possibility of fluxon trapping
and increased maximum current when the defect is situated
asymmetrically. We will study the phase distribution at I = 0
and try to extract information on the critical field values
and magnetization. We find the following modes grouped
according to flux content.

(i) Modes 0, 0l, 0r, 0c. In figure 12(a) we present the
critical current plotted against the magnetic field for the modes

Figure 11. Critical current, Ic, plotted against the magnetic flux,
Nf , at the maximum current for the different modes, for a junction
of length � = 10: (a) for the asymmetric defect case and (b) for the
two symmetric pinning centres of length d = 2.

with magnetic flux around zero (see figure 12(d)). This is
indicated by the 0 symbol. There are four modes belonging
in this category, which are stable. The solutions for mode
0 are similar to the homogeneous junction mode 0, with no
flux trapping in the defects. The only difference is that the
instability in the critical field occurs when the phase at one
edge reaches a value which is smaller (due to pinning) than
the corresponding value for the defect-free junction, which
is φ(−�/2) < π . The same is true for the two-defect case.
Mode 0c has the maximum critical current Imax = 5.08 for
H = 0. One antifluxon is trapped in the leftmost defect, one
fluxon in the rightmost and the phase in the centre defect is
constant. The trapping at the edge defects leads to a positive
current distribution between them for this particular length and
enlarges the maximum current. The same type of mode was not
found for the two-defect case (with a shorter junction length),
and we conclude that the extra defect along with the increased
junction length stabilizes this solution. For mode 0l one fluxon
is trapped in the left-hand defect where the phase changes about
the value φ = π . The antifluxon is distributed at the other two
defects, where the phase is about the values 3π/2 or π/2, and
we have a cancellation of the positive and negative current
density in this region. Similarly for mode 0r the fluxon is
trapped in the right-hand defect, and the current is distributed
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Figure 12. Critical current Imax plotted against the magnetic field, H , for the different modes: (a) 0, 0l, 0r , 0c, (b) 1r , 1l, 1c, and (c) 2,
2a, 2b for a junction of length � = 14.2 which contains three symmetric pinning centres of length d = 2. The corresponding magnetic
fluxes are presented in (d), (e) and (f).

with opposite sign to the other two defects. These modes are
similar to the 0a mode for the two-defect case.

(ii) Modes 1l, 1c, 1r. In figure 12(b) we see the maximum
current plotted against the magnetic field for the modes with
magnetic flux around Nf = 1 (see figure 12(e)). There
are three modes with flux close to Nf = 1 each of which
corresponds to the trapping of one fluxon in one defect. In
mode 1c the fluxon is trapped in the centre defect. In mode 1l
(1r) it is trapped in the left (right)-hand defect. Due to
the symmetry, the lowest eigenvalue and the magnetic flux

coincide for these two modes, but as we showed in the previous
section, their critical currents are different, depending on the
tunnelling current distribution in the region with no trapping.
The 1r mode corresponds to a higher critical current.

(iii) Modes 2, 2a, 2b. In figure 12(c) we see the maximum
current plotted against the magnetic field for the modes with
magnetic flux around Nf = 2 (see figure 12(f)). Only mode 2
corresponds to stable solutions. There we have two fluxons
trapped in the side defects. In mode 2a one fluxon is trapped
in the right-hand defect, while in mode 2b this trapping occurs
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Figure 13. Inline critical current Imax plotted against the magnetic
field, H , for modes 0, 1 and 2, for the junction with an asymmetric
defect but smooth variation of the critical current density. x0 = 7.6
and µ = 2.

in the centre defect. We conclude that distributed pinning
centres are more effective in trapping the vortex, and lead to an
increased critical current. Some conclusions will continue to
be valid for a larger number of defects where we keep the defect
width and separation fixed. In such a case we also expect the
results to change significantly when there is a periodic array
of defects, where we expect higher fluxon modes to give the
highest current peak [26].

8. Defect with a smooth variation of current density

Up to now we considered defects with abrupt changes in the
local critical current density, and the question arises whether
the abruptness ofJc variation is crucial in the significant change
in Imax for the n = 1 mode. We will see that similar effects
exist for smoother variation, where again fluxon pinning is an
important feature. For this reason we chose a single defect
at the junction centre with a smoothly varying critical current
density given by

J̃c(x) = tanh2

[
2

µ
(x − x0)

]
(9)

where the defect is centred at x0, and the width is determined
by µ. In figure 13 we show the results for the case x0 = 7.6
and µ = 2, which can be compared with the results of the
asymmetric defect in figure 2(a). For the modes shown the
curves are very similar and thus we see that the main results
survive, since the defect strengths are similar. Of course there
is a quantitative difference, but most of the stability criteria
described earlier are still valid.

In figure 14 we consider the effect of the form of current
input and compare the case of inline with overlap for a smooth
defect situated at the centre of the junction i.e. x0 = 0 with
µ = 0.5. In figure 14(a) we present Imax for inline boundary
conditions, and we show only the −1, 0, 1 modes. The 0 mode
is not influenced at all by the defect since all the phase variation
is at the boundaries. There is a strong similarity with Imax for
the 1 and −1 modes. The reason is that in these cases there is a
trapped fluxon or antifluxon at the centre and at zero current and

Figure 14. Critical current Imax plotted against the magnetic field,
H , for the different modes, for (a) inline current and (b) overlap
current, for the junction with a centred defect and smooth variation
of the critical current density.

magnetic field the phase variation dies out at the boundaries.
Thus when increasing the current at H = 0 towards Imax we
have the same situation at the boundaries as for the 0 mode
and the instability happens close to Imax values. Of course due
to the pinning, the fluxon content is very different from the 0
mode. The −1 and 1 modes have an enhanced Imax and the
small difference in Imax from the 0 mode is attributed to the
small influence of the trapped fluxon on the boundaries. Let us
remark that a similar situation was seen in figure 8(a) for the
square well defect, when the defect position is at the centre for
H = 0. By comparing, with figure 9, the Hcl and Hcr values
we see a close agreement with the case of jd = 0 in the defect.
These results could change for a shorter junction or if we move
the defect towards the edges (as seen in figure 8(a)).

For the same defect we also investigated the effect of
the overlap current input, where the current is distributed
along the whole junction. In figure 14(b) we present the
maximum current per unit junction length plotted against the
magnetic field, and it should be compared to the inline case
in figure 14(a). We see a significant change for the −1 and 1
modes. Of course at I = 0 both current inputs give the same
solution, but Imax is much smaller for the overlap boundary
conditions. This is from the fact that due to the applied current,
the fluxon is pushed against the pinning barrier until it is
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�

Figure 15. (a) Magnetic flux at zero current as a function of the
external field for the same type of inhomogeneity as in figure 14.
(b) The corresponding evolution of the lowest eigenvalue λ1 for the
different modes. At the end of each mode λ1 vanishes.

overcome at the critical current. In the absence of an applied
current the phase at the defect centre is φ(0) = π , while the
application of the current pushes the fluxon to the edge of the
defect, which is taken to be near the point where the curvature
of the defect critical current distribution changes sign. So in
this case we can consider this maximum current as a measure
of the pinning force.

In figure 15(a) we plot the magnetic fluxNf at zero current
against the magnetic field H for the inline case. The lowest
eigenvalues for the different modes against the magnetic field
are seen in figure 15(b). For a homogeneous junction the 0
mode is the only stable state available at H = 0. However,
in the problem we consider here, mode 1 (−1) exists and it
is stable for H = 0 and corresponds to the localization of the
soliton (antisoliton) in the inhomogeneity. For these modes we
have a pinned flux atH = 0, with φ(0) = π , and dφ/dx = 2.
In figure 16 we show the evolution of φ and dφ/dx for mode 1
as we change the magnetic field at I = 0. NearH = −1.9 the
fluxon content is near zero and for H < −1.9 an instability
sets in due to the depinning of the fluxon. This is because the
slope at the pinned fluxon competes with the opposite slope
that the external negative magnetic field tries to impose at the
boundaries. At the other end the flux is equal to two, and the
instability sets in when φ at the boundaries approaches π (or
odd multiples). The range of H values for the 1 mode, when
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Figure 16. The evolution of φ(x) and dφ(x)/dx for mode 1 as we
change the magnetic field at I = 0, for the same type of
inhomogeneity as in figure 14. The numbers are H values.

the defect is at the centre, is significantly broadened and gives a
corresponding range for the flux of two fluxons. Usually each
mode has approximately one extra fluxon and, in particular,
for the perfect junction it contains only one extra fluxon. This
is because the defect is at the centre and far enough from the
edges where the magnetic field is applied, and therefore even
for negative fields there is no significant competition with the
field at the defect centre. This is especially true when the
distance of the defect from the edges is greater than 2λJ . When,
however, the defect is near the edge the instability sets in before
we cross to negative magnetic fields.

The maximum current Imax for mode 0 is greater than in
modes 1,−1, but is reduced compared with the Imax for mode
0 in the homogeneous junction, in zero field. In [33] this
reduction is approximated in an analytical calculation using a
delta function for the defect potential, and it was found that
0Imax = −µ/2L ≈ 0.02. In [33] the authors arrived at the
analytical result by minimizing the fluxon free energy, for the
maximum overlap current against the magnetic field H for
these modes, which is a good approximation of the numerical
solution we consider here in the limit L 	 1.

9. Conclusions

In many applications it is desirable to work in an extremum
of the current for a region of the magnetic field. This
can be achieved by the appropriate distribution of defects
so that the negative lobes of the current distribution in the
junction due to the fluxons are trapped in the defect with
no contribution to the current. Of course if the defect is
isolated (far from other defects or the edges) we expect a zero
contribution to the current. Due to the effect of the applied
current and magnetic field at the boundaries, in certain cases
we can obtain positive current lobes outside the defect. In
several cases in section 3 this was the reason for the increased
current. Because the control of the magnetic field is very
easy compared to other system parameters (like temperature,
disorder, etc) the measurement of the effect of the magnetic
field on junction behaviour provides a convenient probe for the
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junction. The calculation of Imax can characterize the quality
of the junction or verify the assumed distribution of defects
when they are artificially produced. The spatial variation of
the critical current density on low-Tc layered junctions, and
high-Tc grain boundary junctions can be directly imaged with
a spatial resolution of 1 µm using low-temperature scanning
electron microscopy [34, 35]. Information on smaller scale
inhomogeneities has to rely on the magnetic field dependence
of the maximum tunnelling current Imax .

The purpose of this paper is the consideration of large
defects in order to study the interaction between fluxons and
defects and give estimates of the coercive field for pinning or
depinning a fluxon from a defect. The region of consideration
puts us far from the region of perturbation calculations and is
amenable to direct experimental verification since it is easy to
design a junction with the above characteristics. The defects
strongly influence the low fluxon modes. At high magnetic
fields, larger than the depinning field of a single fluxon, we
expect only a minor effect and fluxon trapping. Of course
for a large number of defects interesting behaviour can be
obtained [24, 25]. The interaction between fluxons in the
few-defect case also assists in overcoming coercive fields and
untrapping fluxons. The results of two trapped fluxons in the
two-defect case show that the fluxons are strongly coupled and
one cannot consider an exponential interaction type potential
between the fluxons. Also, the critical current in a long
junction cannot be calculated as the Fourier transform of the
spatial distribution of the critical current density Jc(x), at least
for weak magnetic fields. For strong magnetic fields, where
we have the field uniformly penetrating the junction, as is the
case for short junctions, we recover a diffraction like pattern.

In summary, we saw that the bounds of the different
modes determined by the stability analysis depend on two
factors: (i) the instability at the boundaries away from the
defect when φx reaches its extremal values equal to ±2 and
(ii) the instability due to the pinning or depinning of a fluxon by
the defect. If the junction is near one end then we saw that both
criteria play a role in determining the instability, independently
in different areas. In general, however, there will be coupling
between defects and the edges (surface defects) especially in
the case of multiple defects. Defects also introduce hysteresis
phenomena which are weaker in the case of smooth defects.
We also saw that due to fluxon trapping, in general, we see
a re-entrant behaviour, i.e. there are regions of magnetic field
for which there is both an upper and a lower bound on the
maximum current. We also find that due to the pinning of
magnetic flux from the defect there exist additional stable
states in a large interval of the magnetic field. The abrupt
change in the critical current density is not crucial for the
trapping. Similar results are expected from smooth defects,
with quantitative differences. The above results can be checked
experimentally since it is easy to design a junction with
a particular defect structure using masking techniques. In
fact, a few parameters or characteristics could give, at least,
partial information on the defect properties. In particular, the
measurement of Hcr or Hcl can give some information on the
defects near the edges. In addition, the measurement of the
Imax(H) diagram will give us information on the defect critical
current density. Also, one can imagine the situation where we
scan locally with an electron beam, thus affecting the local

critical current, and observe the variation of the Imax as we
increase the heating. Once a fluxon is trapped we can decrease
the heating (or increase jd ) and observe the variation of Imax .
Thus one can have pieces of information to put together in
guessing the defect structure that might fit the whole Imax
pattern. The extension to many defects requires considerable
numerical work. It is hoped, however, that some of the stability
criteria will still be useful.
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