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Critical currents in Josephson junctions with unconventional pairing symmetry:
dy2_y2+is versusd,z_2+id,,
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Phenomenological Ginzburg-Landau theory is used to calculate the possible spontaneous vortex states that
may exist at corner junctions af,2_,2+ix-wave (wherex=s or x=d,,) ands-wave superconductors. We
study the magnetic flux and the critical current modulation with the junction orientation éntjle magnitude
of the order parameter, and the magnetic fidldt is seen that the critical curreht versus the magnetic flux
® relation is symmetric/asymmetric for=d,, /s when the orientation is exactly such that the lobes of the
dominantd,2_ >-wave order parameter points towards the two junctions, which are at right angles for the
corner junction. The conclusion is that a measurement of {f¥) relation may distinguish which symmetry
(dy2_y2+is or dy2_y2+id,,) the order parameter has.
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I. INTRODUCTION cently the field dependence of this splitting has been ob-
served in the tunneling spectra of YBC®!! This observa-
One of the main questions in the research activity orfion is consistent with al,2_,2+is surface order parameter

high-T, superconductors nowadays is the identification of2s Well as ad,>_y2+id,, bulk order parameter. Another
the order parameter symmetry and its underlyingduestion which can be asked is to what extend, the observa-

K tion of a symmetric magnetic interference pattern in the cor-
ner junction experimentss an identification ofl,2_y2-wave
symmetry, or could also imply d,2_,2+id,, pairing state
Iso? In this work we propose a phase sensitive experiment
ased on the Josephson effect, which may be used to distin-
guish which symmetrydy2_,2+is or dy2_y2+idy,) the or-

mechanisnt:> The most possible scenario is that the bul
pairing state has d,2_2-wave character. Theoretical calcu-
lations, suggest that an imaginasywave component which

breaks the time reversal symmetry is induced in some case%
wherever thed,>_,2-wave order parameter varies spatially

sugh asfr;eart.a v?rtextz or hear :he sur:%\ééso' thbe obzer- ._der parameter has near the surface. We study the static prop-
vation ot fractional Vortices on a trianguiar grain boundary g jeg of g frustrated junction which is made of two one-

YBaZCu307 by_ Kirtley et al.* may indicate a po_SS|bIe Vio-  4imensional junctions, od,>_,2+ix-wave (wherex=d,, or
lation of the time-reversal symmetry near grain boundaryy — gy andswave superconductors. By introducing an extra
Theoretical explanation of this experiment is given by Bailey,g|5tive phase in one part of this junction, the above junction
et al.in Ref. 5 where they study a triangular grain boundarycan pe mapped into the corner junctions experim@ftsve
in d-wave superconductors. They conclude that under th@xamine the spontaneous flux and the critical current modu-
assumption otl-wave symmetry, the flux at the edges of this |ation of the vortex states with the junction orientation angle
triangle can take the values ®/2, which does not agree ¢, the magnitude of the secondary componegt and the
with the experiment. However under the assumption ofmagnetic fieldH. In each case we derive simple arguments
dy2_,2+is-wave symmetry an intrinsic phase shift,(x)  which are useful to discriminate between the time reversal
exists in each triangle edge. In turn the phasfex) must  symmetry broken states. For example, when the orientation
change in order to connect the different valuespfin each  is exactly such that the lobes of the dominali_,2-wave
segment. This arrangement leads to fractional vortices or arbrder parameter points towards the junction interface the
tivortices at each three corners, in agreement with the expermagnetic interference pattern is symmetf@symmetri¢
ment. when the secondary order parametexisd,,(s). This is
Another pairing state which breaks the time reversal symverified for small junctions as well as in the long junction
metry is thed,2 ,2+id,, wave. Patches of compled,, limit, and can be used to distinguish between broken time
components are induced around magnetic impurities at loweversal symmetry states.
temperatures in al,2_2-wave superconductor forming a  The rest of the paper is organized as follows. In Sec. Il we
phase coherent state as a result of tunneling between diffegtiscuss the Josephson effect between a superconductor with
ent patche§.VioIation of parity and time reversal symmetry broken time reversal symmetry and awave supercon-
occurs in this state. Also on the high field regidths=H ., ductor. In Sec. Il the geometry of the corner junction is
thed,2_,2-wave state can be perturbed by the external fileddiscussed. In Sec. IV we present the results for the magnetic
producing ad,2_,2+id,, state in the bulK. flux of the spontaneous vortex states in corner junctions with
The observation of the splitting of the zero energy peak insome intrinsic magnetic flux. In Sec. V the parameters which
the conductance spectra at low temperatures indicates thatcan modulate the spontaneous flux and the critical currents
secondary component is induced which violates locally theare considered. In Sec. VI a connection with the experiment
time reversal symmetr¥ Theoretical explanation based on is made. Finally, a summary and discussion are presented in
surface-induced Andreev states, has been propbseel the last section.
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a) A Jei=(2ef/mEdyning,
b
a Jeo1=(2ef/m*dynins,
g t ~ATB
z Jer2= (2eh/myd)nzny, )
0 Jeoo=(2ef/mid)ynsns .
B X m3 ,m;,m; are the effective masses that enter into the
Ginzburg-Landau equations. In the following these masses
are taken equal to an effective mass.
b) We restrict to the case wheBeis ans wave. In this case
nf=0, andnS=const. We definep=¢5— ¢7, as the rela-
d+is or d+id’ tive phase difference between the two superconductors. We
on surface consider the case where the intrinsic phase difference within
superconductoA is ¢5— ¢7'=m/2. Then the order param-
b eter inA is complex and breaks the time reversal symmetry.
a\/ The supercurrent density can be written as
0 I(p)=Jcsin(d+ o), 4)
with
s-wave jC: /J§+J2, (5)
FIG. 1. (a) A single Josephson junction between superconduct- 7132
ors A and B with a two component order parameter. The angle tan 3. J;>0,
between the crystallina axis of A and the junction interface i6. b= ! (6)
(b) The geometry of the corner junction between a mixed symmetry _1J2
m+tan ~—, J;<0,

superconductor, and awave superconductor. J,’

whereJ;=Jq,1, Jo=—J¢,. The Josephson critical current
densityJ, is scaled in units ofl,=ef/m*d. Two special
cases are the following:

We consider the junction shown in Fig(al, where two (i) For dy2_,2+is-wave case the magnitude of the
superconductorsA in the regionz>t and B in the region d,2_y2-wave component in Eq1) is ﬁ’f=n10cos(29), where
z<0), are separated by an intermediate layer. We assumgis the angle of the crystallina axis of superconducto
that each superconductor has a two component order paramwith the junction interface. The magnitude of the secondary
eter. The order parameter for each compon€kt=1,2) in  gder parameter in superconductois ﬁ/;:nzoz 0.1n4,.
the superconductors, can be written as (i) For dy_,2+id,,-wave case, the magnitude of the

d,2_,2-wave component in Eq.(1) is given by nj
=n;,c0s(%), while the d,, wave component isﬁzA
=nN,Sin(26), wheren,y=0.1n14. This order parameter can
@ occur in the followin : Th d i
g way: The order parameter magnitude
for the d-wave stateAy(0) = Ay cos(2) is an equal admix-
ture of pairs with orbital momerit,= +2, and can be writ-

Here ¢(® is the phase of the order parametgrin super-  ten asdq(6) =(Aq/2)[exp(26)+exp(-2id)]. In the presence
conductorA(B). Then phenomenological Ginzburg-Landau of perturbation such aderromagnetically ordered impurity

theory is used to calculate the supercurrent density give§PINSS, the coefficients ofl.,==2 components will shift
by'3 linearly in S, with opposite signs. The final state will be

Ag(0)—Ay(0)+iS,A4(6), where A;(6)=sin(26). The
strength of the secondary component is proportional to the
perturbations, .

Il. JOSEPHSON EFFECT BETWEEN TWO
SUPERCONDUCTORS WITH MIXED WAVE SYMMETRY

_n A

n@e"/’k, z>t,
=1 ~, B
nEe'¢k, z<0.

2
J= 2 Jewsin(p—op), ()
k=1 IIl. THE CORNER JUNCTION GEOMETRY

We consider the corner junction shown in Figb)l be-
where tween a superconductor with broken time reversal symmetry
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at the surface and an s-wave superconductor. If the angle of 40
the a axis with the interface in th& direction is 6, then the )
corresponding angle in thedirection will be 7/2— 6. We 20 |
map the two segments each of lengtt2 whereL =10\ ; of 0 . 0
this junction into a one-dimensional axis. In this case the 0.0 s )
two-dimensional junction can be considered as being made = 1|1 -1 1
: - Lo : - -2.0 t
of two one dimensional junctions described in Sec. Il con- -
nected in parallel. Their characteris’gic _phamsi and ¢, _40 | “\\/x """"""""" .
depend upon the angle. We call this junction frustrated Y
since the two segments have different characteristic phases -6.0 fooo - T S~——
b1, o The fabrication details of corner junctions or su- —0c—2
perconducting quantum interference devi@QUID), be- B0 S 01 o0z 03 03 05
tween sample faces at different angles can be found in Refs. om
2,12.
The superconducting phase differengeacross the junc- FIG. 2. The stable solutiongh=—dc,+2mm ($=—dc,
tion is then the solution of the sine-Gord¢sG) equation 2N, for nj=0,—1, i=1,2, that exist in the leftright) junc-
tion, of d,2_,2+is-wave ands-wave superconductors, when con-
dz(b(x) sidered uncoupled, at zero current, versus the orientation @hgle
5 =JcSin ¢ (X) + ()] =1, (7)  Each junction has length/2, whereL=10\;, and ¢, ,(¢c,) is
dx the extra phase difference in the Idfight) junction due to the

different orientations. The arrows denote the variation of the phase

¢ in order to connect these stable solutions in the frustrated junc-

tion geometry. We present three possible solutions, hes0,
=H. (8) —1,1, and down(up) arrow denotes negativ@ositive magnetic
x=0,L flux.

with the boundary conditions

dé
dx

The lengthx is scaled in units of the the Josephson penetra- . . . . . .
tion depth given by =0,—1, i=1,2 as a function of the orientation angt

When the frustrated junction is formed, and we consider the

702 above junctions in parallel, the phageis forced to change
_— aroundx=L/2, to connect these stable solutions. This varia-
8medko tion of the phasep, along the junction describes the Joseph-
whered is the sum of thes wave, and mixed wave ., fsci? vortices. The flux content of these stdiasunits of &)
penetration depths plus the thickness of the insulator layefs
The relative phas@.(x) is ¢¢1(¢co) in the left(right) part
of the junction. The external magnetic figtj scaled in units O=[$(L)— ¢(0)]2m=(~ ¢cot b1 +2n7)/27,
of H,=#%c/2ed\ ; is applied in they direction, which is con- (10
sidered small compared th;. The bias current per unit
length 1°V in the overlap geometry is scaled in units of
(cl4m)H., and is uniformly distributed along the entire
axis of the junction. We can classify the different solutions
obtained from Eq(7) with their magnetic flux content

)\J:

where then value (h=n;—n,=0,21,+2,...) distin-
guishes between solutions with different flux content. We
will concentrate to solutions called modes with the minimum
flux content i.e.n=0,1,—1. Their magnetic flux in terms of
b1, Per is shown in Table I. Generally the flux content is
1 fractional, i.e., is neither integer nor half-integer, as a conse-
d=—(dr— ¢, (99  quence of the broken time reversal symmetry of the problem.
2m In the actual numerical simulations, the stable solutions of

where ¢,y is the value of¢ at the right(left) edge of the the sine-Gordon equation in the léftght) part of the junc-

junction, in units of the flux quantun®y,=hc/2e.
TABLE I. The magnetic flux ¢) in terms of¢¢q, ¢, for the

spontaneous solutions that exist in the corner junction geometry

between a superconductor with time reversal broken symmetry and
First let us consider the case where the two oneanswave superconductorf, . is the extra phase difference in

dimensional junctions ofi,z_,2+ix wave wherex=s or x the two edges o_f the corner j_unction due to the different orienta-

:dxyi ands-wave supeconductors, each of lengtt2, de- tions, of thea axis of th_e_domlnandxz,yz-wave superconductpr

scribed in Sec. Il are uncoupled. Then for@<L/2 the e presentonly the minimum flux states-0,-1,1.

stable solutions for the sG equation agg(x)= — ¢.1

IV. SPONTANEOUS VORTEX STATES

+2n,m, wheren,=0,+1,+2, . . . ,while for LI2<x<L the  ~orex staten Magnetic flux ()
stable solutions for the sG equation ag¥(X)= — ¢ 0 (= byt bey)2m
+2n,m, wheren,=0,=1,+2, ... ,where¢.;, ¢.,, arethe 1 (= bt byt 27)/27
relative phases in each part of the junction due to different 1 (= oot oy — 27) 27

orientations. These solutions are plotted in Fig. 2, for
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tion are taken as the initial conditions for the iteration pro- 2.0 ‘
cedure. For example for the=0 solution the phase(x)is L _____ =1
taken ¢(X)=— 1 (— ¢ep) In the left (right) part of the ]

) . rel - I . 1.0 %
junction, as an initial condition and then is iterated until con-

vergence. In addition, if we take as initial conditiorb(x) .
= — ¢.1, In the left side, andb(x) = — 27— ¢, in the right g 0.0 I
side, the final state of the system, after the iteration proce- | n=—1
dure, is the solution which we cali=—1, with negatve | ™ \
magnetic flux, and not exactly opposite ie=0. We com- =10 \
ment here that the solutions after the iteration procedure have T—
smooth variation as a function of the position, as opposed to 20 ‘ . ‘ .
the step function variation of the initial conditions. 60 01 02 03 04 05
For the 0-0 junction¢.;= ¢.,=0, and the flux becomes b/m
®=n, so we say that the flux is quantized in integer units of |G, 3. The magnetic flu as a function of the angle, for the
®o. In this case, there exist solutions with fldk=---,  yarious vortex statesi=0,— 1,1, that exist spontaneously in a cor-

—1,0,1; - - .**> These solutions, when#0 are stabilized by ner junction between d,>_,2+is-wave and arswave supercon-
the application of an external magnetic field. In the case of @uctor, with lengthL =10\ ;. The flux for =0 is fractional.
junction with some spontaneous flux, at least for the modes

with lower flux content, the external field is not necessaryously reduces its flux, i.e., it becomes flat exactly éat

since the spontaneous magnetization state is stable. = 7r/4 and then it reverses its sign and becomes an antivortex
In the case of 6 7 junction, where the intrinsic phase in with exactly opposite flux content &= /2 from that até
the right (left) part of the junction isp.,=—7 (¢.1=0), =0. In addition we have plotted in Fig(@ the phase dis-

the stable solutions of the sG equation @rex) =2n7 for
the left part, while¢(x) = m(2n+ 1) for the right part of the
junction. In this case a9 junction is formed. The corre-
sponding flux become® =(n+1/2)7, and the particular
values ofn=0, n=—1 give the half vortex and antivortex
solutions, with opposite fluxon conter®=0.5 and® =
—0.5, respectively.

V. MAGNETIC FLUX AND CRITICAL CURRENT

MODULATION
T I T I
In the following we will describe three parameters which 4.0 - 7
can alter the spontaneous flux and the critical currents of the 2.0
vortex states described in the previous section, in a corner
. ; o 0.0
junction between a superconductor with time reversal broken
symmetry and as-wave superconductor. These include the -20 ¢
orientation angled, the magnitude of the secondary order —4.0
parametemg, and the magnetic fieltl. In each parameter e |-
separately we will point out the differences between the h
dy2_y2+is, anddy2_y2+id,, waves. -8.0
4.0
A. Junction orientation 2.0
For thed,2_,2+is-wave case, we consider first the situ- 0.0
ation whered is varied from 0 tom/2. In Fig. 3 we plot the o0 |
spontaneous magnetic flux versus the angle for the dif- o
ferent modes1i=0,— 1,1 in the corner junction geometry. As =40
we can see the magnetic flux changes with orientation. For -6.0
angle# close to 0 ormr/2 the spontaneous modes existing at 80 L 1
H=0 are separated by an integer value of the magnetic flux. 00 20 40 60 80 100
This is also the case in the pusavave superconductor junc- X

tion problem. The difference is that the modes are found pig 4 The phase distribution of the vortex solutigasn=0,
displaced to fractional values of magnetic flux, contrary toat g—0. 7/4, =/2: (b) n=—1, at9=0, 0.242r, where the insta-
the swave case where the magnetic flux takes on intege[,imy sets in, andw/2; () n=1, at §=0, 0.258r, at the point
values atH=0. In particular the vortex solution in the  where the instability occurs, and/2, for a corner junction of
=0 mode(solid line) contains less than half a fluxon fer dye_,2+is-wave and swave superconductors, with length
=0, and as we increase the angléowards/4 it continu- =10\, and zero overlap external currdit=0.
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2.0

1.0 ¢
<
0.0
-1.0
o/n o/n
FIG. 5. The lowest eigenvalug; of the linearized eigenvalue FIG. 6. Overlap critical current’ per unit length versus the
problem as a function of angle, for then=0,—1,1 solutions. In  angled for a corner junction ofl,>_ >+ is-wave ands-wave super-
the range wheré is close to zero, the eigenvalues for bot 0,  conductors, with length. =10\, for the vortex solutions1=0,
and — 1 are positive and correspond to stable solutions. —1,1 that exist spontaneously in the junction.

tributions for the moden=0 in different orientationse

=0,7/4,m/2. The transition form the vortex to the antivortex length 12" as a function of 4, at H=0, for the
mode as the orientation changes is clearly seen in this figuré@.=0,—1,1-mode solutions, in thd,2_,2+is-wave case. In
Note that the solutions in this mode remain stable for allthe overlap geometry the current is distributed in the emtire
junction orientations. This is seen in Fig. 5 where we plot theaxis. In the calculations we have taken into account that the

lowest eigenvalueX;) of the linearized eigenvalue problem josephson critical current densifiy has a characteristic
as a function of the angle.’® We see thak,>0, denoting  yariation with the orientation. We find that for a given ori-
stability for all values of the anglé in this mode. entation it is possible for the junction current density to vary
Let as now examine the solution in the=—1 mode i, the way that several modes with different critical currents
(dotted line in Fig. 3 We see that a9=0 it has negative . exist. In Fig. 7 we plot the current density when the total
l_‘lux, which in absol_ute value is more thaly/2 and as We  cyrrent is maximum, for different modes, and orientations,
increase the anglé it decreases its flux to a full antifluxon  nich will give us information about the actual shapes of the
when the orientation is slightly greater tham and_ tha_n ©  yortices. Let us consider the situation where the junction
flux greater thartby when 6 reachesr/2. As seen in Fig. 5 contains a solution in the mode=0, at9=0, when the net

this solution becomes unstable at a point to the leftyof current is maximum. The spatial variation ¢fis described

= 7r/4 (point ) due to the abrupt change of flux at this angle. : U
More strictly the instability sets in due to the competition by a fractional vortex Wh'Ch. IS d|.spl_ace_d around the value
7, from the corresponding distribution at zero current

between the slope of the phase at the edges of the junctio‘ﬁ:_ ) _ e
and at the junction center as the anglapproaches the value Which is aroundr/2 [see Fig. 4a)]. The current density dis-

/4. At this point the slope competition makes the antivortextfibution as seen in Fig. (@ (solid line) at the maximum

unstable. This is seen in Fig(s} (dotted line where the currentis flat above unit with a small variation around the

phase distribution for tha= —1 mode solution is plotted at junction center giving rise to the large value on the net cur-
the point where the instability starts, i.@=0.242r7. rent, seen in Fig. 6. Also &= 7/4 the flat phase distribution

Finally the solution in then=1 mode contains more than corresponding to th&é=0 solution at zero current is dis-
one fluxon at9=0 and is clearly unstable. It becomes stableplaced towards the valu¢=m when applying an external
at an angle slightly on the right ¢f= /4 (point v in Fig. 5  current. The corresponding current distribution seen in Fig.
where the flux varies more smoothly, sée 0.2587 in Fig. 7(a) (dotted ling is straight line and the net current is small
4(c). At 6=/2 it contains more thad,/2 in flux. We ex-  for this orientation. For then=—1 solution at the point
pect a time reversal broken symmetry state sucldas,2  Where the instability sets in, i.e9=0.2427, the current den-
+is to be characterized by either the solution in the frac-sity distribution is symmetric around zero as seen in Fg) 7
tional vortex or antivortex mode, because due to the differentdotted ling and carries zero net current at this point. Thus
character of these solutions a change from one variant to thi@e instability occurs just before the angle where a full anti-
other would demand the application of an external current ofluxon enters the junction. A slightly different situation oc-
magnetic field and in this sense it would cost additional encurs in the magnetic interference pattern of a psieave
ergy. So since these states are stable in external perturbadperconductor junctidh where, the net current is zero at
tions, once the system is prepared in one of these it wilthe magnetic field where a full fluxon or antiluxon enters the
remain to that state. junction, in the no flux 0 mode. At the poiit= /2, of the

In general we see that for each valueéfthere existin n=—1 mode the junction contains more than one fluxon
the junction a pair of stable solutions which when applyingcausing the characteristic oscillations in the current density
an external bias current will lead to observable critical cur-around the junction center as seen in Figh) {dashed ling
rents. In Fig. 6 we plot the overlap critical current per unit This reduces the critical current for this orientation.
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2.5

2.0

1.5

J(x)

1.0

0.5

0.0

2.0

1.0

FIG. 8. (@) The spontaneous magnetic fldx as a function of

%00 20 40 60 80 100 the angled, for the various vortex states=0,— 1,1, for a corner

junction between a,2_,2+id,,-wave and ans-wave supercon-

ductor, with lengthL =10\ ;. The flux for =0 is integer multiply
FIG. 7. The current density distributiai(x) of the vortex so-  of ®/2. (b) The corresponding critical currenf” per unit length.

lutions (@) n=0, at§=0, w/4, w/2; (b) n=—1, at#=0, 0.242r,

where the instability sets in, and/2; (c) n=1, at¢=0, 0.258r, at

the point where the instability occurs, and2, for a corner junction . . . o
of do_o+is-wave andswave superconductors, with length  fOr 0= /4, the critical currents for both junctions coincide.
Xe—y ’

—10\,, and maximum external overlap curraft . Also the unstable part of the=1 branch, in thd . vs ¢ is
almost the same for the two symmetry states, due to the
small difference in the flux, compared with the large flux

For thed,2_2+id,, pairing symmetry state, we plot in content of the solutions in this region.

Fig. 8(a) the flux content for the=0,— 1,1, versus the angle

0. Note the half integer or multiplies value @&f at ¢ close to

0 or 7/2. For this grain orientation the magnetic flux is only

sensitive to the real part of the order parameter, which has a In the above calculations the magnitude of the secondary

sign change but does not break time-reversal symmetry. Iorder parameter is small compared to the domin@set,
thed,2_,2+is-wave state the order parameter is complex forn,,=0.1n,4). However, the maximum fraction of the sec-

all junction orientations and breaks the time-reversal symmesndary component that has been observed in phase coherent

try. Close to 0 orm/2 the flux is fractional. The flux quanti- experiments employing different materials, geometries, and

zation at@=0 can be used to discriminate between thesaechniques is up to 25% of the domina&nkhis triggered our
states. interest to study the magnetic flux and also the critical cur-
In Fig. 8b) we plot the critical current per unit length rents as a function of the strengtigf of the secondary order
evolution with the grain anglé in the d,>_,2+id,,-wave  parameter, where the magnitude of the dominant order pa-
state. Close t®9=0 we see that thé2" for then=0,—1  rameterny is also varied in a way thatg+ny=1. When
solutions, coincide. This happens also6at 7/2 for then ns=0 only the d,2_,>-wave order parameter is present,
=0,1 solutions. In these orientations the order parameter bevhile whenns=1 only thes-wave order parameter appears.
comes pure real and does not break the time-reversal synihis situation can be realized, for example, near the surface
metry. As a result the critical current at these angles is thevhere thed,> ,2-wave order parameter is suppressed and the
same as in a junction with purd-wave symmetry. Atd s-wave order parameter is enhanced. The result is presented
=m/4 the order parameter is pure imaginary and has thé Fig. (@ and 9b) for thed,>_,2+is-wave case ad=0.
same magnitude for both pairing states. As a consequendde see that when the secondary component is alisent

B. Magnitude of the secondary order parameter
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2.0 ‘ . ‘ ‘ 6.0
a)

n=1

3.0 ¢
1.0 -

/D,
/D,
o
o
I
o

0.0
-3.0 =
.............. n=-1 g
-1.0 ‘ S -6.0 : : ‘ :
0.0 0.2 0.4 0.6 0.8 1.0 -40 -2.0 0.0 2.0 4.0 6.0
n, H
20 ' ' ‘ ‘ FIG. 10. Magnetic fluxd/d at zero external current versus the
b) magnetic fieldH for a corner junction ofd,>_,»+id,,-wave and

swave superconductors, with length=10\;, for angle §=0°.
H¢ (H¢,) denotes the critical values of the magnetic field where the
moden=0, terminates.

ov
c

current versus the magnetic fieldH for the
dy2_y2+id,,-wave state ab=0. In the pureswave super-
conductor junction there is no overlap between different
- modes in the magnetic flux, and each mode has magnetic
1.0 flux which is more tham® g, and less thanr(+ 1)®. In this
n problem due to spontaneous magnetization the range of the
modes is different and in some cases overlapping, and the
FIG. 9. (a) The spontaneous magnetic fldxand(b) the critical labeling is with a single index, corresponding to the pure
currentl2” per unit length versus the strengtl of the secondary swave superconductor junctiofm,n+1) model® Moreover
swave component for a corner junction df._,2+is-wave and the range in magnetic flux of each mode is displaced com-
s-wave superconductors, with lendth= 10\ 5, for the vortex solu- pared to the pure-wave superconductor junction problem
tionsn=0,~1,1 that exist spontaneously in the junction. The mag-by an amount which corresponds to the intrinsic flux. Also
nitudeny of thed,._,»>-wave order parameter is given by the rela- h h ist f stabl t tat . _'1
tion n -+ ng=1. we have the existence of stable vortex sta es,_n.e.O, ,
together with the unstable ones, i.as=1, —2 in a large
interval of the magnetic field, which is almost the same. The
n.=0) the picture of thed,» .-wave state is reproduced. n=—_2 mode exte_nds to zero magnetic field,_and the reason
The same picture also holds for thgz_,2+id,,-wave state V€ did not examined this mode in Sec. IV is because the
at#=0, since the order parameter for i 2+ id,,-wave stability qnaly§|s shows .negatlve eigenvalues for all the
state at9=0 is real not breaking the time-reversal symmetry.@n9€ of junction orientations, &=0. In the longs-wave

So for =0 the magnetic flux and the critical current for the 1UNCtion the extremum of the mod®,1) in H is the critical
dye_y2+id,,-wave state would not show any change with field for one fluxon(antifluxon penetration from the edges

the variation of the secondary order paramelgr. As ng is [denoted byH., (Hc), for the right(left) edgd, and is equal
increasing the modes=0 andn=—1 are no more degen- to 2(—2). Th(_a solution for the phase at these extremum
erate. in the sense that their flux deviates from the valudalues of the field becomes unstable because the value of the
®o/2 and — d /2, respectively, and also their critical cur- phase at the Junct_lon e_dges reaches a critical value. In the
rents are no longer equal. The maue O has larger critical p_roblem of a junction with some spontaneous flux, we con-
current because it has smaller flux content in absolute valué.!de_r_here' the range of the corresp_ondmg_ mode B iis

For values ofng close to unity, the different modes contain sgmﬂcantly broadene_d and also the |nstab|llty at the bo_und—
integer magneiic flux. as in th,e junction betweswave su- aries sets in due to different reasons. In particular the insta-
perconductors, and a’Iso their critical currents have the sa “ty oceurs due to the interaction of.thg flux entering from”
values as in the perfect junction problem. The conclusion i € junction edges, V\_/hen the magnetic field reaches the criti-
that the larger the secondary component is in a sample tHg?! ValueHc (He), with the spontaneous flux at the center.

easier is to be detected in a flux measurement experiment. _|m|lar features are enc_ountered In the probler_n of flux pin-
ning from a macroscopic defect in a conventiosakave

junction’
We now examine the magnetic-interference pattern for
We now examine the influence of the magnetic field onthe two symmetries where the bias current enters in the over-
the spontaneous vortices for broken time reversal symmetriap geometry. In thed,. ,2+id,,-wave case, wheré=0,
pairing states. In Fig. 10 we plot the magnetic flux at zerothis pattern has a symmetric form as we can see from Fig.

C. Magnetic field
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11(a). This is because this result is only sensitive to the real | ()
part of the order parameter, which has a sign change but does I
not break time-reversal symmetry. For the angle 0.5
where the order parameter has a finite imaginary part and
breaks the time-reversal symmetry this pattern becomes .
asymmetric and the “dip” appears to a value of flux slightly AS We see ab=0 for thed,2_,2+id,,-wave case, the rela-
different than zero. Note that the asymmetry refers mainly tdiOn ¢c2— ¢c1=n holds, and the magnetic interference pat-
the modes1=0, andn= — 1. The other modes are not influ- tern becomes symmetric, while for thgz_,2+is, this dif-
enced much due to their higher flux content. Also the criticaference is a fraction ofr and the pattern is asymmetric.
current is Suppressed Compared to the case whereé as However, as we increase the junction Iength, we expect this
can be seen in Fig. 1), due to a drop inJ. symmetric pattern for thd-wave order parameter to be con-
In the d,2_,2+is-wave symmetry, in the limit wherg  tinued. This symmetry in the large junction limit, is de-
—0, the order parameter is complex and the pattern is asyncribed more effectively by the assumption of the 0,—1
metric as can be seen in Fig.(t}, for the angled=0. This  solutions which give a symmetric magnetic interference pat-
is in agreement with our previous work for the inline currenttern as we presented. Also tie=—1 solution extends to
input for a junction Withdxz,y2+i5 Symmetry:_ls There it values for the magnetic ﬂUX, where the=0 solution is ab-
was found that the pattern is asymmetric for lengths as longent. Eliminating one of them will break the symmetry of the
asL=10\n;. For angles close ter/4, the magnetic interfer- diagram.
ence pattern is similar with thd,. ,2+id,, state. This is
because the sin@@ dependence of the,, component is al-
most unity. This is seen in Fig. 1d) where we present the
variation of the critical current per unit length versus the
enclosed flux forf=0.5, and the symmetry state @g2_,»  field observed in corner junction experiments between
+is. YBCO and Pb a#=0 has been interpreted as an indication
In the short junction limitL <\, the same argument can of d,2_,2-wave symmetry®?° This result refers to short
be applied without any explicit reference to fractional vortexjunctions where the junction size is much smaller than the
and antivortex solutions. However, as we found in our predJosephson penetration depth. However, as we found here
vious work!® both n=0 andn=—1 (theref,,,f,) exist, these experimental data are also consistent with an order pa-
with reduced flux content, in this limit as a continuation of rameter withd,2_,2+id,, pairing symmetry a#=0.
the corresponding solutions in the large junction limit. In this  Also the critical current . versus the magnetic flu® of
case the external applied magnetic field becomes equal to tlee SQUID, consisting of two planar Josephson junctions on
self-field, and the maximum current can be calculatedhe faces of YBCO superconducting crystal, connected by a
analytically®? loop of a second superconductor, f6=0 or 6=x/2 is

sin(m®/20q) co§ TP /2D o+ (oo — he1)/2]|
7®20, '

m0

(11)

VI. EXPERIMENTAL RELEVANCE

The symmetric pattern with a minimum at zero applied
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found shifted by®=0.5b, and has a minimum ab=0  flux trapping effects are not sufficiently large to change the
(instead of a maximum as in a SQUID involving conven- qualitative interpretation of these experiments.

tional sswave superconductors or the edge SQUID in which

both junctions are on the same crystal fabat is still sym- VII. CONCLUSIONS

metric. This result has been attributed to an order parameter

with d,2_,2-wave symmetry. However the theoretical analy-
sis done by Beaslegt al?! shows that it is also consistent
with an order parameter witth2_,2+id,, pairing symmetry

at9=0 (9=0 corresponds tg=/2 in the geometry of Ref. +idyy or d,2_,2+is) and ans-wave superconductor, in the

21). long junction limit. We studied separately three parameters
In both cases of SQUID and corner junction the symmet-Whi%A can be usea to modulate thpe S on);aneouspflux These
ric pattern observed a2=0 rules out thed,2 2+is-wave P .

pairing state where the order parameter is complex ever)/?hrg trr:i(taur(;]:ggfettlﬁeﬂesli{t’)ég?nlir;]fr:{agi d(;rrlen;g?r?, a?dvtlhee
where resulting in an asymmetrig versus® pattern for all 9 P ang

angless. However, the small asymmettiess than 2960b- pointed out the differences between time reversal broken

served atd=0 in some experiments can be attributed tostates under these modulation parameters.

) . . . We found that in flux modulation experiments involving
various complicating factors, e.g., fluxon trapping as will be . .
) 2 . superconductors with some spontaneous flux the range in
discussed latter in this section.

magnetic flux of each mode is displaced compared to the

The experiment proposed here to resolve ambiguity be- . .
. P case of a pure-wave superconductor junction by an amount
tweend,2_,2+id,, andd,2_,2 at =0, is to execute the

same experiments using SQUID or corner junction at awhich corresponds to the intrinsic flux. In particular when
P 9 J The magnetic fieldH is considered as the modulation param-
angle between sample facéshetween 0 andr/2. Our cal-

culation predicts symmetri¢asymmetri pattern for the eter, the range il of the lower fluxon modes is significantly
P ym ymme P broadened compared to teevave case, and the instability at
dy2_y2-wave (dy2_,2+id, -wave pairing state for the cor-

ner junction case. This kind of experiment has already beethe boundary values of the field sets in due to the interaction

. . ) Bf the flux entering from the junction edges with the intrinsic
Sgﬂg zlanr(:h;e?iise?j cl)i];hso QgDh%zﬁmZﬂ;zThaentgﬁ,ﬁlgg (ijc')f%i”_flux. In any case, for each value of the parameter which
. L grap y patterned by changes the flux, the modes are separated by a single flux
ing of ac-axis oriented film. A YBCO thin film is patterned uantum
into a circle with a series of Nb-Au-YBCO edge junctions atq :

orientations spaced everv 7.5°. The measurement dt.te We also derived some simple arguments to discriminate
\entatl P every f.o 1 u k between the different pairing states that break the time rever-
0, which probes mainly the magnitude of the order paramete

has an angular anisotro indicating an anisotropic ordegal symmetry. For thel,z_,2+id,y-wave pairing state, the
9 Py, 9 P nction orientation wher&=0, i.e., the lobes of the domi-

parameter. Also the execution of these experiments is n antd,2_,2-wave order parameter are at right angles for the
easy due to the difficulty in cleaning, polishing a crystal at . . Ve fl o ditichi= nd /2
angle 6, between 0 andr/2 corner junction, give flux quantization conditigh=n®,

' ' as in thed,2_,2-wave state, which is different from the cor-

Also in an experiment analogous to the corner junctionresponding flux quantization for thisz_ 2 is-wave pairing
. 22 . R . . 7y =
Miller et al~“ used frustrated thin-film tricrystal samples to state, atd=0, which is® = (n/2+ f)®y, wheref is a small

probe the pairing symmetry of YBCO. They found a mini- quantity. These different conditions provide a way experi-

mum in thel; vs the externally applied flu$p, diagram at R .
R : Y . - mentally to distinguish between time reversal broken sym-
®.=0 in the short junction limit and a maximum &@.=0 . .
for a wide iunction where the iunction lenath is much lar ermetry states. Note that since the magnitude of the secondary
J J 9 9€ order parameter is small compared to the dominant, the de-

tﬂaﬂéhséjéozog?ggr;ﬁ;j dwgi; iﬁgcttgigl tggxc\(,)vry:?ccr: ?rl:_an— tection of time reversal broken states requires a very precise
y P measurement of the spontaneous magnetic flux.

voIv_es (_:on_tribution both f_r(_)m the ext_ernally applied flux and Also we showed that the magnetic interference pattern at

the |n_tr|nS|tc flux. In Iaddltt;on, the trlc:ystal magneton:_etri( 0=0 is symmetric (asymmetriz for the dy_,2

experiments can only observe spontaneous magnetization, , (dye_.2+is), and this also can be used to probe
Xy Xe—y '

only for the wide junction limit in Fhe _frustrated g.eomef.r?y. which symmetry the order parameter has, at least where the
There are a number of complicating factors in the inter-.

retation of the experiments involving corner junctions thatJunCtions are formed. We expect our findings, for the mag-
P P X 9 J netic field dependence of the critical current, to hold even in
could lead to an asymmetrid { vs ®) pattern even ford

—0. These are the asymmetry of the junctioneaning that the short junction limit, where the most experiments on cor-

the critical current of the two junction faces are not egual ner junctions have been performetf.
This will only cause the dip to be shallower and will main-
tain the symmetry of thé, vs ® diagram. Also these experi-
ments are influenced by the sample geometry and the effect
of flux trapping, i.e., there can be vortices trapped between One of us(N.S) is grateful to A.V. Balatsky and J. Be-
the planes of the cuprate superconductors that could affecburas for useful discussions that led to this article. Also,
thel. vs ® diagram. In the corner junction case, it creates arN.S. would like to acknowledge the ESF/FERLIN program
asymmetry in the flux modulation curves. However thesdor partial support to participate in conferences.

We studied numerically the possible spontaneous vortex
states that may exist in a corner junction between a super-
conductor with time reversal symmetry brok@re., dy2_ 2
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