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We investigate theoretically the interaction between integer and half-integer Josephson vortices(fluxons and
semifluxons) in an annular Josephson junction. Semifluxons usually appear at the 0-p boundary where there is
a p discontinuity of the Josephson phase. We study the simplest, but the most interesting case of onep

discontinuity in a loop, which can be created only artificially. We show that measuring the current-voltage
characteristic after injection of an integer fluxon, one can determine the polarity of a semifluxon. Depending on
the relative polarity of fluxon and semifluxon, the static configuration may be stable or unstable, but in the
dynamic state both configurations are stable. We also calculate the depinning current ofN fluxons pinned by an
arbitrary fractional vortex.
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I. INTRODUCTION

For conventional Josephson junctions the first Josephson
relation readsIs= Ic sinsfd, where Is is the supercurrent
through the junction,Ic is the critical current, andf is the
so-called Josephson phase that is equal to the difference of
the phases of the quantum-mechanical macroscopic wave
functions in the electrodes. The Josephson relation for a Jo-
sephsonp junction is Is=−Ic sinsfd= Ic sinsf+pd, i.e., ap
junction can be considered as a junction with negative criti-
cal current or having an additional phase shift ofp between
the phases of the wave functions(therefore the name). Ac-
cordingly, conventional Josephson junctions are sometimes
called 0 junctions. If one considers a one-dimensional(1D)
long Josephson 0-p junction (LJJ) made of alternating parts
with positive and negative critical currents(0 andp parts),
half-integer flux quanta(semifluxons1,2) may spontaneously
form at the boundaries between 0 andp regions.31

Semifluxons are very interesting objects which are not yet
studied in detail, first of all because up to now it was rather
difficult to fabricate 0-p junctions. Recently, several groups
succeeded to demonstrate 0-p junctions based on various
technologies: YBa2Cu3O7-Nb ramp zigzags,3,4 grain bound-
ary junctions based on tri- and tetracrystals,5,6 and Nb junc-
tions based on an artificially created discontinuity.7 Both 0
and p junctions from the superconductor-ferromagnet-
superconductor family were demonstrated by several
groups8–10 but a 0-p LJJ was not reported yet. Semifluxons
were observed using superconducting quantum interference
device (SQUID) microscopy in different types of 0-p
LJJs.4,11–13

A single semifluxon, formed in a LJJ of lengthL@lJ with
one 0-p boundary, is pinned at this 0-p boundary14,15 and
can have positive or negative polarity carrying the flux
+F0/2 or −F0/2, respectively. The bias current from 0 up to
s2/pdIc (Ic= jcwL is the “intrinsic” critical current,w is the
junction width) cannot move the semifluxon, but just
changes its shape.14 This property suggests using semiflux-
ons in information storage devices, classical or quantum.

In the classical regime the polarity of a semifluxon(posi-
tive or negative) will encode a logical 0 or 1. The informa-

tion encoding using semifluxons is somewhat more robust
than using fluxons because semifluxons cannot “escape” as
they are pinned at the discontinuity point. The switching be-
tween these states can be done by injecting a single flux
quantum of proper polarity into the junction.

In the quantum limit a semifluxon having two possible
polarities is similar to a spin with two possible orientations
(up or down). Therefore, we often use spin notation to denote
the polarity of the semifluxon, i.e.,↑ or ↓. Analogously, we
denote the polarity of a fluxon as⇑ or ⇓. It seems that a
semifluxon is an interesting candidate to realize a qubit. It
still remains a challenging task to find out whether the semi-
fluxon may stay in the superposition of both states and per-
form quantum tunneling between them or not. In comparison
with a fluxon-based qubit the one based on a semifluxon
should be more robust as both↑ and ↓ states represent the
ground state of the system, while the fluxon of any polarity is
an excited state, the ground state being the one with constant
phase.

For both quantum and classical bits one needs a way to
determine the final state of the semifluxon, i.e., read out its
polarity. Imagine the simplest situation: a single semifluxon
of unknown polarity in an annular LJJ.28 Let us inject a
fluxon of a certain polarity into this Josephson ring some-
where far from the semifluxon position, e.g., using a pair of
current injectors.16 If the polarities of the fluxon and of the
semifluxon are different, the “annihilation” between fluxon
and semifluxon will result in a pinned semifluxon of the
opposite polarity(we assume that the bias current is zero
during fluxon injection). The I-V characteristic(IVC) of the
resulting state has a rather large maximum supercurrent(de-
pinning current of a semifluxon) gc

↑=2/p in normalized units
sg= I / Icd. On the other hand, if the fluxon and the semifluxon
are of the same polarity, no annihilation takes place. If the
bias current is applied, the fluxon starts moving passing
through the semifluxon, resulting in a finite voltage across
the LJJ and rather lowgc. In this case the depinning current
gc

⇑↑ is determined by the repulsion force between fluxon and
semifluxon. The fluxon should overcome this pinning by the
semifluxon to start moving around the ring.
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In this paper we propose a technique to test the polarity of
semifluxons by introducing test fluxons into the Josephson
ring. Measuring the current voltage characteristic we can de-
termine the polarity of semifluxon(s) before the fluxon was
introduced. We also study resulting states which have differ-
ent critical (depinning) currents and different dynamics.

In Sec. II we introduce the model that is used for numeri-
cal simulations. The numerical results are presented and dis-
cussed in Sec. III. Section IV concludes this work.

II. THE MODEL

The dynamics of the Josephson phase in a LJJ consisting
of alternating 0 andp parts can be described by the 1D
perturbed sine-Gordon equation1

fxx − ftt − sin f = aft − g − uxxsxd, s1d

wherefsx,td is the Josephson phase and subscriptsx and t
denote the derivatives with respect to coordinatex and time
t. In Eq. (1) the spatial coordinate is normalized to the Jo-
sephson penetration depthlJ and the time is normalized to
the inverse plasma frequencyvp

−1; a=1/Îbc is the dimen-
sionless damping(bc is the McCumber-Stewart parameter);
g= j / jc is the external bias current density normalized to the
critical current density of the junction. The functionusxd is a
step function, which isp discontinuous at all points where 0
and p parts join and is a constant equal topn within each
part (n is an integer). For example,usxd can be equal to zero
along all 0 parts andp along allp parts.

It is clear from Eq.(1) thatfsxd is alsop discontinuous at
the same points asusxd. Therefore, we often call the points
where 0 andp parts joinphase discontinuity points.

Note that to describe 0-p LJJs other authors2,17,18 often
use directly the equation with alternating critical current den-
sity written for the continuous phasemsx,td

mxx − mtt ± sin m = amt − gsxd, s2d

where the “+” sign refers to allp domains, and the “−” sign
to all 0 domains. Equations(1) and(2) are, actually, equiva-
lent and one can be obtained from the other by substitution
fsx,td=msx,td+usxd.1

In case of an annular LJJ one should use periodic bound-
ary conditions(b.c.) to solve Eqs.(1) and(2). In the case of
a conventional annular LJJ without phase discontinuities the
boundary conditions are expressed as follows:

fsL,td = fs0,td ± 2pnF, s3d

wherenF is the number of flux quanta(Josephson vortices)
trapped in the ring. Note that when there are no discontinui-
ties m;f, so that b.c.(3) holds form also.

For the case of an annular LJJ with discontinuities, the
boundary conditions forf are still given by Eq.(3). This can
be understood using the followinggedankenexperiment.
Imagine that we start from the state without discontinuities
fsxd=0. Then we slowly increase a discontinuity, e.g., by
using a pair of closely located tiny current injectors,7 at some
point x=x0 from the value 0 to some valuek. It is clear that
the Josephson phasefsxd changes somehow on the length

scalelJ in the vicinity of x0 to compensate(to react on) this
discontinuity, e.g., by forming a fractional vortex with the
center atx=x0. In any case the phasefsxd and its derivative
fxsxd are smooth and continuous functions all along the
junction except for the pointx=x0. Assuming that the discon-
tinuity point does not coincide withx=0 or L, we can write
fs0d=fsLd and fxs0d=fxsLd. In the presence of additional
fluxons trapped in the junction we get b.c.(3) even in the
presence of the discontinuity points.

The b.c. form can be written, recalling thatm=f−usxd

msL,td = ms0,td + pnSF+ 2pnF, s4d

wherenSF is the sum of all discontinuities(semifluxons) in
the ring. Note that if

usxd = o
i=1

N

kiHsx − xid, s5d

whereki is theith discontinuity andHsxd is a Heaviside step
function, the expression fornSF is

nSF= o
i=1

N

ki . s6d

In this paper we will investigate the following two cases:

(1) A fluxon is injected into the annular LJJ containing a
negative semifluxon, i.e.,nF= +1, nSF=−1.

(2) A fluxon is injected into the annular LJJ containing a
positive semifluxon, i.e.,nF= +1, nSF= +1.

III. NUMERICAL RESULTS

The simulations were performed usingSTKJJ software.19

Some of the results were confirmed by an independently
written program.29

We usea=0.1 for all results reported here. This value is
not very high, so that it allows us to observe some dynamics.
On the other hand, it is not very low as the majority of
0-p junctions has rather high damping. In the casea*1 the
static results related to the reading out the state of a semi-
fluxon hold, but no dynamical effects such as fluxon steps
can be observed.

In order to visualize and to understand the fluxon and
semifluxon dynamics we plot their trajectories on thesx,td
plane. Usually, to track the trajectory of a fluxon one tracks
the trajectory of its center. Since at a given instant of time,
the phasemsxd, corresponding to the fluxon solution, changes
from 0 at x→−` to 2p at x→ +`, it is assumed that the
center of a fluxon coincides with the point where the phase
m=p. Since the phase is defined modulo 2p, in the general
case the center of fluxons is situated at points wherem=p
+2pk with integer k. To distinguish between fluxons and
antifluxons, we also check the sign of the phase derivativemx
(magnetic field) at the point wherem=p+2pk. If the sign is
positive, then it is a fluxon and we plot its position as a black
point onx-t plane. If mx,0, then it is an antifluxon and we
plot it as a gray point on thex-t plane.
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When we deal with semifluxons, the idea is the same, but
since the phase of a semifluxon changes from 0 to
p smod pd we have to define the centers of semifluxons as
the points wherem=p /2+pk. The sign ofmx at the points
wherem=p /2+pk is used to distinguish between semiflux-
ons of positive and negative polarity. With this definition,
every 2p fluxon carrying the integer fluxF0 results in two
points on thex-t plane, i.e., its trajectory will be represented
by a double line. Below we present numerical results ob-
tained for an annular junction of lengthL=8lJ.

A. One semifluxon in a ring

First we investigate numerically an annular LJJ with only
one phase discontinuity point. Here and below, without los-
ing generality, we assume that the injected fluxons have posi-
tive polarity ⇑ [nF= +1 in Eq.(4)].

1. Negative semifluxon

If initially the semifluxon has negative polarity↓ [nSF
=−1 in Eq.(4)] the fluxon is attracted by the semifluxon and,
in the absence of a bias current, they “annihilate,” resulting
in a positive semifluxon↑.

In Fig. 1(a) one can see the annihilation process of the
semifluxon situated atx=3 and the fluxon injected atx=6 (it
corresponds to two lines atx<5 andx<7 at t=0) for zero
bias currentg=0. If we trace the IVC of the state after an-
nihilation, we get the curve shown in Fig. 2 by solid black
symbols. As a horizontal axis we use the fluxon velocityu
normalized to the Swihart velocity and proportional to the
voltage across the junction. In this notation a single fluxon
has an asymptotic velocity 1, two fluxons haveu→2 asg
grows, etc. Atu=0 the state of the system is the semifluxon
↑ with maximum supercurrent(semifluxon depinning cur-
rent) gc

↑=2/p<0.63.20,14,21,22In the Appendix we derive de-
pinning current for a general case, from whichgc

↑=2/p fol-
lows as a particular result. When the bias current exceeds
this value the system switches to the McCumber branch. By
sweeping the bias current back one may trace the step with
asymptotic velocityu=3, corresponding to the state⇑⇑ ⇓↓,
which is formed probably due to the topological instability of

the solution similar to the formation of zero-field steps in
conventional LJJ. The trajectories corresponding to the bias
point d can be seen in Fig. 1(d).

What happens if we inject a fluxon while having a non-
zero bias current? If the bias current as well as the distance
between fluxon injection point and semifluxon are large
enough, the fluxon approaches the semifluxon with rather
high velocity and annihilation will not take place—the
fluxon will simply pass through the semifluxon. Thus, inject-
ing a fluxon at a finite bias current we can trace an IVC
which is shown in Fig. 2 by open symbols. The semifluxon
trajectories at the bias pointsb andc are shown in Figs. 1(b)
and 1(c), accordingly. One can see that on average a semi-
fluxon is shifted by the bias current away from the disconti-
nuity point and oscillates around this new equilibrium posi-
tion as the fluxon bumps it. Comparing Figs. 1(b) and 1(c),
one can also notice that the fluxon’s double line is more tight
in (c) which is a result of relativistic contraction. Note that
after the bias current is reduced to zero the annihilation takes
place anyway and the system returns to the IVC correspond-
ing to the state↑, without a moving fluxon, so that further
sweeping ofg shows only the curve drawn by solid black
symbols in Fig. 2.

FIG. 1. Trajectories of fluxons(double line) and semifluxons(single line) corresponding to annihilation⇑+ ↓ =↑ at g=0 (a); dynamics
in the state⇑↓ at the first fluxon step atg=0.3 (b); at g=0.6 (c); dynamics at the third fluxon step(state⇑⇑ ⇓↑) at g=0.6 (d); dynamics at
the second fluxon step(state⇑⇓↑) at g=0.3 (e). The vertical dashed line shows the position of the discontinuity. The vertical dotted line
shows the position of the center of the static semifluxon at the corresponding bias. In(a) for g=0 both lines coincide.

FIG. 2. IVC after injection of a fluxon into a 0-p LJJ containing
a semifluxon of negative polarity. The solid black symbols show the
IVC after annihilation, open symbols show the IVC which can be
traced if injection takes place at finite 2/p.g.gr <0.21. Dotted
line shows the position of the McCumber branch(uniform phase-
whirling state).
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Actually one can also trace the second fluxon step with
asymptotic velocityu=2. It corresponds to the state⇑⇓↑ and
is shown in Fig. 2 by solid gray symbols. We were able to
find this state only starting from the pointe at g=0.3 with a
fluxon situated atx=5 and an antifluxon atx=8. It is impos-
sible to visualize this mode just by sweeping the bias current
since this step is shadowed by↑, ⇑⇑ ⇓↓, and⇑↓ steps.

2. Positive semifluxon

Now we consider a semifluxon of a positive polarity ini-
tially present in the LJJ. The injected fluxon and semifluxon
repel each other and no annihilation can occur. Here we use
the boundary conditions(4) with kF=1 andkSF=1 to obtain
the IVC. By applying a small bias current we push the fluxon
along the ring so it approaches the semifluxon. For a small
value of the bias current, the situation is static as the driving
force of the bias current can be compensated by the repulsion
force between the fluxon and the semifluxon. By increasing
the bias current, the fluxon moves closer to the semifluxon
and at some critical value of the bias current overcomes the
maximum possible repulsion force and passes through the
semifluxon. After this, the fluxon keeps moving around the
ring, bumping the semifluxon once per cycle. The current
voltage characteristic of this state is shown in Fig. 3. One can
see that the maximum supercurrentgc

⇑↑= <0.21, correspond-

ing to the maximum possible repulsion force between the
fluxon and the semifluxon, is considerably smaller thangc

↑

=2/p<0.63 of a single semifluxon. Thus, the two situations
can be distinguished. In the Appendix we calculate the de-
pinning current for general case and, in particular, show that
the exact value ofgc

⇑↑=2/s3pd=gc
↑ /3.

The trajectories corresponding to the dynamics of the sys-
tem are shown in Fig. 4 for several bias points marked in
Fig. 3. We see that at the first fluxon step, see Fig. 4(b), the
fluxon (double line) moves progressively colliding with the
semifluxon. The semifluxon corresponds to a more or less
vertical line shifted to the right from the discontinuity point
by the bias current. Note that in Fig. 4(a) we can see essen-
tially the same dynamics,but the semifluxon is much more
delocalized, probably because bias pointa corresponds to the
resonance which can be seen on the IVC in Fig. 3. We be-
lieve that this resonance may be related to the eigenmodes of
the semifluxon and to the Cherenkov emission30 of the
plasma waves which are excited when the fluxon periodi-
cally bumps the semifluxon. The emitted plasma wave forms
a standing wave which interacts with a fluxon and results in
the resonance on the IVC.

Thus, the polarity of the semifluxon can be probed by
inserting a test fluxon of known polarity and measuring the
IVC. If a fluxon and a semifluxon have the same polarity one
should expectImax=2/3p<0.21Ic and the appearance of the
first fluxon step. If a fluxon and a semifluxon have different
polarities, one should expectImax=s2/pdIc<0.63Ic and no
first fluxon step provided the injection was made atg=0.

Another difference between these two configurations is
the value of the retrapping currentgr. As one can see from
Figs. 2 and 3 the value ofgr in the ⇑↓ =↑ state is at least
twice larger than for the⇑↑ state.

An interesting observation can be made, if we trace all
fluxon branches of the IVC. In a usual annular LJJ with only
one trapped fluxon(without a semifluxon) one can observe
fluxon steps atV=nV1 with only odd numbersn: the first one
appears due to the motion of a single fluxon, the third one
corresponds to an additional fluxon-antifluxon pair gener-
ated, the fifth one to two fluxon-antifluxon pairs, etc.

In an annular LJJ containing a fluxon and a semifluxon of
the same polarity the situation is different. One can observe
fluxon steps with any integer n. This is especially easy to
observe for the⇑↑ state. The reason for this becomes clear
after an analysis of the trajectories shown in Fig. 4 for sev-
eral bias points marked in Fig. 3.

FIG. 3. Current voltage characteristic after injection of fluxon
into 0-p LJJ containing a semifluxon of positive polarity. All(even
and odd) fluxon steps can be traced. The maximum supercurrent
gmax<0.21. The trajectories at the bias points a–d are shown in
Figs. 4(a)–4(d).

FIG. 4. Trajectories of semi-
fluxons in the state⇑↑ (first fluxon
step) for g=0.2 (a) andg=0.6 (b)
and in the state⇑⇑↓ for g=0.3(c)
and g=0.6 (d). The vertical
dashed line shows the position of
the discontinuity.The vertical dot-
ted line shows the position of the
center of the static semifluxon at
the corresponding bias. In(a) for
g=0 both lines coincide.
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We see that at the second step, there are two positive
fluxons moving in the same direction and the semifluxon
became of negative polarity⇑⇑↓. This means that the semi-
fluxon flipped, and has emitted one positive fluxon—the pro-
cess opposite to annihilation. Now, since there are two flux-
ons which can move and one negative semifluxon which
cannot, the asymptotic voltage of the step is equal to 2V1.
Still, the system can generate fluxon-antifluxon pairs which,
together with semifluxon flipping, will result in fluxon steps
for all integern.

Actually, a similar effect can be observed when initially
the semifluxon had negative polarity. Then starting from the
state↑ one could trace the fluxon steps corresponding to the
states⇑↓, ⇑⇓↑, ⇑⇑ ⇓↓ (see Fig. 2). The trajectories for some
of the bias points can be seen in Fig. 1.

We also note that when the semifluxon polarity changes,
the shift of the average position of the semifluxon changes
too, see Fig. 4. This can be visualized using low-temperature
scanning electron microscopy.23

Analyzing the trajectories while the bias point moves
along the second fluxon step we discovered that the two
fluxons are moving more or less equidistantly at a low value
of the bias current, i.e., at the bottom of the step, as can be
seen in Fig. 4(c). When the bias current increases up tog
<0.45. . .0.50 or above, the fluxons bunch together as shown
in Fig. 4(d). The bunching appears because the plasma
waves, emitted during fluxon-semifluxon collisions, result in
an effective attracting potential between two fluxons. We do
not discuss this phenomenon in detail here, but note that
similar bunching was observed in JJ arrays24 or in stacks of
LJJs.25 In our case, the role of periodic obstacle is played by
a semifluxon. Generally speaking, the plasma wave emission
has a Cherenkov origin and is simply related to the peculiar
dispersion relation for plasma waves in the system under
question.25–27

B. Two semifluxons in a ring

In the case of more than one semifluxon of unknown po-
larity, the above read-out procedure cannot give information
on the polarity of each of the semifluxons, but allows us to
distinguish between states(a) ↑↑, (b) ↓↓, and(c) ↑↓ or ↓↑. In
other words, we can find out the total flux hold by semiflux-
ons. Injecting the first fluxon in a similar fashion as above,
we measure the IVC. If the critical current is low, the fluxon
does not annihilate with semifluxons and keeps moving
around the ring. This can happen only if in the initial state
both semifluxons had the same polarity as the injected
fluxon. If, after injection of a fluxon,Ic is still high, this
means that the injected fluxon has flipped one of the semi-
fluxons. In this case we inject a second fluxon and so on. If
Ic becomes lower after the first injection, the initial state has
been↑↑; if Ic becomes lower after second injection, the ini-
tial state has been↑↓ or ↓↑; and if Ic becomes lower after the
third injection, the initial state has been↓↓.

IV. CONCLUSIONS

We have shown that by introducing a test fluxon of known
polarity into the LJJ with a semifluxon of unknown polarity

we can destructively read out the semifluxon state. In prin-
ciple, the read out can be made nondestructive, if after read-
ing out the semifluxon state we introduce another fluxon of
opposite polarity so that the system returns to its initial state
(as before read out) as a result of fluxon-fluxon or fluxon-
semifluxon annihilation. In the case of two or more semiflux-
ons one can read out the total number of positive and nega-
tive semifluxons. This technique is also applicable to
arbitrary fractionalk vortices, but not very close tok=0 or
2p, where depinning currents for bothN=0 and 1 approach
zero, see Appendix.

We have also investigated fluxon steps in an annular LJJ
with a p discontinuity. We found that one can trace the
fluxon steps corresponding toall integersn, instead of only
odd n like in conventional LJJ with one trapped fluxon. We
have observed a smooth transition to the state of two
bunched fluxons in the⇑⇑↓ state.

Furthermore, in the Appendix we have derived the Eq.
(A9) which gives the depinning current ofN fluxons pinned
by an arbitraryk vortex. We discovered that the biggest ob-
stacle for a fluxon is a fractionalk1 vortex with k1
<0.861p rather than a semifluxon. The formula(A10) al-
lows us to compute the sizekN of the fractional vortex,
which is the biggest obstacle forN fluxons trying to pass it.
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APPENDIX: DEPINNING OF FLUXONS BY AN
ARBITRARY FRACTIONAL VORTEX

Since one can study experimentally arbitraryk vortices,7

here we calculate the depinning current for a chain ofN
fluxons that are pinned by and are trying to pass an arbitrary
k vortex in a LJJ of infinite length. The calculations for
arbitrary vortex andN fluxons are not more difficult than for
a semifluxon and a fluxon, therefore we present here this
more general case.

The static version of Eq.(2) for arbitrary discontinuityk
is:

mxx = sinfm − usxdg − g, sA1d

where

usxd = H 0 for x , 0,

− k for x . 0.

We write separately the equations for the part of the junc-
tion to the left and to the right from discontinuity, situated at
x=0. After integration one arrives at the following two equa-
tions:

y1smd = mx = ± 2ÎC1sgd − cosm − gm, x , 0,

sA2ad

FLUXON-SEMIFLUXON INTERACTION IN AN ANNULAR… PHYSICAL REVIEW B 70, 094520(2004)

094520-5



y2smd = mx = ± 2ÎC2sgd − cossm − kd − gm, x . 0.

sA2bd

Assuming that

mxs±`d = 0, sA3d

ms− `d = arcsing, sA4d

ms+ `d = arcsing + 2pN + k, sA5d

we arrive to the following expressions forC1 andC2:

C1sgd = Î1 − g2 + g arcsing; sA6d

C2sgd = Î1 − g2 + g arcsing + s2pN + kdg. sA7d

We use the phase plane analysis15 to find possible static
configurations. The trajectories on the phase planey1,2smd
corresponding to Eqs.(A2) are shown in Fig. 5 forg=0,
ugu,gc and ugu=gc. At g=0 the fluxon and fractional vortex

are separated by a large distance. The fluxon corresponds to
the trajectory between pointL sx=−`d and point M. The
fractional vortex corresponds to the trajectory between point
M and pointR sx= +`d and contains a pointP where the
black and gray trajectories intersect, i.e., the phase crosses
the 0-p boundary. From Figs. 5(a)–5(c) one can see that with
increasingugu the intersection pointP shifts until, at the criti-
cal value ofugu=gc, the trajectories just touch each other at
point P, as shown in Fig. 5(c). For largerugu, no intersection
is possible and the static solution does not exist.

The critical value ofg at which the switching between
trajectories is still possible is defined by the following con-
ditions:

y1smd = y2smd, y18smd = y28smd. sA8d

This conditions are satisfied form= 1
2s3p+kd, which leads us

to the final result

gcskd =
2

2pN + k
sin

k

2
. sA9d

The plot of this dependence for differentN is shown in
Fig. 6. Thegcskd has reasonable limiting behavior(absence
of pinning forN.0) for k→0 andk→2p. For depinning of
a fluxon sN=1d by a semifluxon,gcspd=2/3p<0.21. It is
interesting thatgcskd has a maximum not atk=p but a bit
shifted, atk1=0.861p, i.e., ak1 vortex is the biggest obstacle
for a fluxon. For two and three fluxons the biggest obstacles
are vortices withk2=0.918p andk3=0.942p. All kN can be
found from the equation

FIG. 5. The trajectories on the phase plane corresponding to
Eqs. (A2). Black color corresponds toy1 (0 part), the gray color
corresponds toy2 (p part). The trajectories are presented for a
fluxon pinned by a semifluxon(N=1, k=p) and (a) g=0, (b)
g=−0.1, and(c) g=−0.21. Arrows are shown to guide the eye.
Arrows show the path which corresponds to going fromx=−`
(point L) to x= +` (point R).

FIG. 6. The dependencegcskd calculated for differentN using
Eq. (A9). The dashed line showsk=p corresponding to the semi-
fluxon. Three dotted lines show the valuesk1, k2, and k3 which
correspond to the fractional vortices which cause the maximum
possible pinning forN=1,2,3fluxons.
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tan
kN

2
=

kN

2
+ Np. sA10d

Note, that in the limitN→`, kN→p.
Our result(A9) is also valid in the caseN=0 and gives

the “depinning” current of thek vortex itself. The result(A9)
coincides with the expression obtained recently for the criti-
cal current of an annular junction in the presence of ak
discontinuity of the phase(current dipole) created by current
injectors.22 In fact one can even say that our result(A9) and
the one of Ref. 22 arethe sameat least if one considers
annular LJJ. In fact, if we denotek8=2pN+k, we can re-
write Eq. (A9) as

gcsk8d =
2 sinsk8/2d

k8
, sA11d

exactly as in Ref. 22. Physically this means that when one
creates a large discontinuityk8=2pN+k in an annular LJJ, it
automatically relaxes intoN fluxons trying to pass through
the fractionalk vortex under the action of bias current. The
interesting result is that the Eq.(A9) for an infinitely long
linear junction and Eq.(A11) for an annular one coincide
regardless of “fluxon crowding” which may take place in
annular LJJ because of its finite length.
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