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We investigate theoretically the interaction between integer and half-integer Josephson vftutioes and
semifluxon$in an annular Josephson junction. Semifluxons usually appear at#heodndary where there is
a 7 discontinuity of the Josephson phase. We study the simplest, but the most interesting caserof one
discontinuity in a loop, which can be created only artificially. We show that measuring the current-voltage
characteristic after injection of an integer fluxon, one can determine the polarity of a semifluxon. Depending on
the relative polarity of fluxon and semifluxon, the static configuration may be stable or unstable, but in the
dynamic state both configurations are stable. We also calculate the depinning cuNeghbamns pinned by an
arbitrary fractional vortex.

DOI: 10.1103/PhysRevB.70.094520 PACS nuni®er74.50+r, 85.25.Cp, 74.20.Rp

I. INTRODUCTION tion encoding using semifluxons is somewhat more robust

For conventional Josephson junctions the first Josephsdfjan using fluxons because semifluxons cannot "escape” as
relation readsls=I sin(¢), where I is the supercurrent they are pinned at the discontinuity point. The switching be-
through the junction], is the critical current, ang is the ~ tween these states can be done by injecting a single flux
so-called Josephson phase that is equal to the difference #antum of proper polarity into the junction.
the phases of the quantum-mechanical macroscopic wave In the quantum limit a semifluxon having two possible
functions in the electrodes. The Josephson relation for a J@olarities is similar to a spin with two possible orientations
sephsons junction islg=-I. sin(¢)=I, sin(¢+m), i.e., am  (up or down. Therefore, we often use spin notation to denote
junction can be considered as a junction with negative critithe polarity of the semifluxon, i.e], or |. Analogously, we
cal current or having an additional phase shiftoobetween denote the polarity of a fluxon &g or [. It seems that a
the phases of the wave functioftherefore the nameAc-  semifluxon is an interesting candidate to realize a qubit. It
cordingly, conventional Josephson junctions are sometimesill remains a challenging task to find out whether the semi-
called O junctions. If one considers a one-dimensiqadl)  fluxon may stay in the superposition of both states and per-
long Josephson @ junction (LJJ) made of alternating parts form quantum tunneling between them or not. In comparison
with positive and negative critical current® and« party,  with a fluxon-based qubit the one based on a semifluxon
half-integer flux quantgsemifluxond? may spontaneously should be more robust as bothand | states represent the
form at the boundaries between 0 andegions®! ground state of the system, while the fluxon of any polarity is

Semifluxons are very interesting objects which are not yean excited state, the ground state being the one with constant
studied in detall, first of all because up to now it was rathemphase.
difficult to fabricate O4r junctions. Recently, several groups  For both quantum and classical bits one needs a way to
succeeded to demonstratenOjunctions based on various determine the final state of the semifluxon, i.e., read out its
technologies: YBsCu,0,-Nb ramp zigzag$; grain bound-  polarity. Imagine the simplest situation: a single semifluxon
ary junctions based on tri- and tetracrysfafsaind Nb junc-  of unknown polarity in an annular L33.Let us inject a
tions based on an artificially created discontindi®oth 0  fluxon of a certain polarity into this Josephson ring some-
and = junctions from the superconductor-ferromagnet-where far from the semifluxon position, e.g., using a pair of
superconductor family were demonstrated by severaturrent injectors® If the polarities of the fluxon and of the
group$—1°but a 04 LIJ was not reported yet. Semifluxons semifluxon are different, the “annihilation” between fluxon
were observed using superconducting quantum interferencend semifluxon will result in a pinned semifluxon of the
device (SQUID) microscopy in different types of @  opposite polarity(we assume that the bias current is zero
LJJs411-13 during fluxon injection. Thel-V characteristiqlVC) of the

Asingle semifluxon, formed in a LJJ of lengtl>\;with  resulting state has a rather large maximum supercu(dent
one 047 boundary, is pinned at this 8-boundary*5and  pinning current of a semifluxgny. =2/ in normalized units
can have positive or negative polarity carrying the flux(y=I1/1.). On the other hand, if the fluxon and the semifluxon
+dy/2 or -,/ 2, respectively. The bias current from O up to are of the same polarity, no annihilation takes place. If the
(2171 (I.=jwL is the “intrinsic” critical currentw is the  bias current is applied, the fluxon starts moving passing
junction widthy cannot move the semifluxon, but just through the semifluxon, resulting in a finite voltage across
changes its shapé.This property suggests using semiflux- the LJJ and rather lowy,. In this case the depinning current
ons in information storage devices, classical or quantum. yET is determined by the repulsion force between fluxon and

In the classical regime the polarity of a semiflux@osi-  semifluxon. The fluxon should overcome this pinning by the
tive or negative will encode a logical 0 or 1. The informa- semifluxon to start moving around the ring.
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In this paper we propose a technique to test the polarity ocale\; in the vicinity of x, to compensatéo react on this
semifluxons by introducing test fluxons into the Josephsomliscontinuity, e.g., by forming a fractional vortex with the
ring. Measuring the current voltage characteristic we can desenter aix=x,. In any case the phasi(x) and its derivative
termine the polarity of semiflux@s) before the fluxon was ¢,(x) are smooth and continuous functions all along the
introduced. We also study resulting states which have differjunction except for the point=x,. Assuming that the discon-
ent critical (depinning currents and different dynamics. tinuity point does not coincide witk=0 or L, we can write

In Sec. Il we introduce the model that is used for numeri-$(0)= (L) and ¢,(0)=¢(L). In the presence of additional
cal simulations. The numerical results are presented and difuxons trapped in the junction we get b(@®) even in the
cussed in Sec. lll. Section IV concludes this work. presence of the discontinuity points.

The b.c. foru can be written, recalling that=¢- 6(x)
' THE MOPEL p(LD) = w(0,0) + mge+ 2, ()

The dynamics of the Josephson phase in a LJJ consisting

of a|ternating 0 andr parts can be described by the 1D Wherens,: is the sum of all discontinUitieSemiflUXOn$ in

perturbed sine-Gordon equatfon the ring. Note that if
byx~ P~ SIN p =y — ¥~ Oi(X), (1) " EN: ) o
i ; 0(x) = 2, kiH(X—X;), 5
where ¢(x,1) is the Josephson phase and subscripasd t o !

denote the derivatives with respect to coordinatnd time
t. In Eq. (1) the spatial coordinate is normalized to the Jo-wherex; is theith discontinuity and(x) is a Heaviside step
sephson penetration depklj and the time_is normalized to function, the expression fargg is

the inverse plasma frequenmy;l; a=1/\p, is the dimen-

sionless dampingg. is the McCumber-Stewart parameter N

vy=jlj. is the external bias current density normalized to the Nee= > K;- (6)
critical current density of the junction. The functieXx) is a i=1

step function, which isr discontinuous at all points where 0 | this paper we will investigate the following two cases:
and 7 parts join and is a constant equal 4m within each
part(n is an integex. For examplef(x) can be equal to zero
along all 0 parts andr along all 7 parts.

Itis clear from Eq(1) that ¢(x) is alsos discontinuous at
the same points ag(x). Therefore, we often call the points
where 0 andr parts joinphase discontinuity points

Note that to describe @ LJJs other authof$’:18 often lll. NUMERICAL RESULTS
use directly the equation with alternating critical current den-
sity written for the continuous phaggx,t)

(1) Afluxon is injected into the annular LJJ containing a
negative semifluxon, i.eng=+1, nge.=-1.

(2) Afluxon is injected into the annular LJJ containing a
positive semifluxon, i.eng=+1, ngg=+1.

The simulations were performed usisgkJJ software®
Some of the results were confirmed by an independently
written progrant?

We usea=0.1 for all results reported here. This value is
where the “+” sign refers to alir domains, and the “~" sign  not very high, so that it allows us to observe some dynamics.
to all 0 domains. Equationd) and(2) are, actually, equiva- On the other hand, it is not very low as the majority of
lent and one can be obtained from the other by substitution-7 junctions has rather high damping. In the case1 the
(X, 1) = u(x, 1)+ 6(x).1 static results related to the reading out the state of a semi-

In case of an annular LJJ one should use periodic boundtuxon hold, but no dynamical effects such as fluxon steps
ary conditiongb.c) to solve Eqs(1) and(2). In the case of can be observed.
a conventional annular LJJ without phase discontinuities the |n order to visualize and to understand the fluxon and
boundary conditions are expressed as follows: semifluxon dynamics we plot their trajectories on thet)
_ plane. Usually, to track the trajectory of a fluxon one tracks
¢(L.0) = $(0.0) £ 2, ©) the trajectory of its center. Since at a given instant of time,
whereng is the number of flux quant@Josephson vorticgs the phaseu(x), corresponding to the fluxon solution, changes
trapped in the ring. Note that when there are no discontinuifrom 0 atx— —« to 27 at Xx— +%, it is assumed that the
ties u= ¢, so that b.c(3) holds for x also. center of a fluxon coincides with the point where the phase
For the case of an annular LJJ with discontinuities, theu=. Since the phase is defined module,2n the general
boundary conditions fo# are still given by Eq(3). Thiscan  case the center of fluxons is situated at points wherer
be understood using the followingedankenexperiment. +2wk with integerk. To distinguish between fluxons and
Imagine that we start from the state without discontinuitiesantifluxons, we also check the sign of the phase derivative
¢(x)=0. Then we slowly increase a discontinuity, e.g., by(magnetic fielg at the point where.=7+27k. If the sign is
using a pair of closely located tiny current injectéis, some  positive, then it is a fluxon and we plot its position as a black
point x=x, from the value 0 to some value It is clear that point onx-t plane. If 4, <0, then it is an antifluxon and we
the Josephson phask(x) changes somehow on the length plot it as a gray point on the-t plane.

Moo= Mg £ SIN w = apy = y(X), 2
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FIG. 1. Trajectories of fluxon&ouble ling and semifluxongsingle line corresponding to annihilation+ | =1 at y=0 (a); dynamics
in the state]| at the first fluxon step ag=0.3 (b); at y=0.6(c); dynamics at the third fluxon steptatedJ[1007) at y=0.6 (d); dynamics at
the second fluxon stefstate1[17) at y=0.3 (e). The vertical dashed line shows the position of the discontinuity. The vertical dotted line
shows the position of the center of the static semifluxon at the corresponding b{asfdn y=0 both lines coincide.

When we deal with semifluxons, the idea is the same, buthe solution similar to the formation of zero-field steps in
since the phase of a semifluxon changes from 0 teonventional LJJ. The trajectories corresponding to the bias
o (mod 7) we have to define the centers of semifluxons agpointd can be seen in Fig.(d).
the points whereu=/2+mk. The sign ofu, at the points What happens if we inject a fluxon while having a non-
where u=m/2+mk is used to distinguish between semiflux- Zero bias current? If the bias current as well as the distance
ons of positive and negative polarity. With this definition, between fluxon injection point and semifluxon are large
every 27 fluxon carrying the integer flu, results in two ~ €nough, the fluxon approaches the semifluxon with rather
points on thex-t plane, i.e., its trajectory will be represented Nigh velocity and annihilation will not take place—the
by a double line. Below we present numerical results obfluxon Will simply pass through the semifluxon. Thus, inject-
tained for an annular junction of length=8\ . ing a fluxon at a flr)|te bias current we can trace an IVC

which is shown in Fig. 2 by open symbols. The semifluxon
trajectories at the bias poinbtsandc are shown in Figs. (b)
A. One semifluxon in a ring and Xc), accordingly. One can see that on average a semi-
First we investigate numerically an annular LJJ with onlyﬂﬂﬁon Ic?irih[af:\%dok)s)::itllrzebslﬁgﬁr%emiz\/\rl\?\;vfraomuiltig(raifrlnscoon;;:
one phase discontinuity point. Here and below, without Ios—ti ny P the fluxon bumos it. Comparing Fi qb nd P
ing generality, we assume that the injected fluxons have p03|—o as the fiuxon bumps It %0 p,a 9 g$' )la} 1o), :
tive polarity [ [ne=+1 in Eq. (4)]. one can glso_ notice that the ﬂu_an_s double I|r_1e is more tight

in (c) which is a result of relativistic contraction. Note that
after the bias current is reduced to zero the annihilation takes
place anyway and the system returns to the IVC correspond-

If initially the semifluxon has negative polarity [nge  ing to the state], without a moving fluxon, so that further
=-1in Eq.(4)] the fluxon is attracted by the semifluxon and, sweeping ofy shows only the curve drawn by solid black
in the absence of a bias current, they “annihilate,” resultingsymbols in Fig. 2.
in a positive semifluxory.

In Fig. 1(a) one can see the annihilation process of the 1 "'_,"'

1. Negative semifluxon

semifluxon situated at=3 and the fluxon injected at=6 (it 06— ==
corresponds to two lines at=5 andx=7 att=0) for zero 1K N e Nt mid f\d i
bias currenty=0. If we trace the IVC of the state after an- ~ 0.4

nihilation, we get the curve shown in Fig. 2 by solid black *g ’

symbols. As a horizontal axis we use the fluxon velocity g il

normalized to the Swihart velocity and proportional to the © 0.2

voltage across the junction. In this notation a single fluxon J
has an asymptotic velocity 1, two fluxons have»2 asy 0.0 -
grows, etc. Atu=0 the state of the system is the semifluxon
T with maximum supercurrentsemifluxon depinning cur-
rent) y.=2/7~0.63201421.22n the Appendix we derive de-

pinning current for a general case, from WhW}FZ/W fol- FIG. 2. IVC after injection of a fluxon into a @-LJJ containing
lows as a particular result. When the bias current exceeds semifluxon of negative polarity. The solid black symbols show the
this value the system switches to the McCumber branch. By/c after annihilation, open symbols show the IVC which can be
sweeping the bias current back one may trace the step witifaced if injection takes place at finite 2> y> y,~0.21. Dotted
asymptotic velocityu=3, corresponding to the staf#1[l|, line shows the position of the McCumber branemiform phase-
which is formed probably due to the topological instability of whirling state.

00 05 10 15 20 25 3.0
velocity u
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i LR L L LR BN RS R ing to the maximum possible repulsion force between the
fluxon and the semifluxon, is considerably smaller than
=2/m7=0.63 of a single semifluxon. Thus, the two situations
T can be distinguished. In the Appendix we calculate the de-
- pinning current for general case and, in particular, show that
the exact value of)'=2/(37)=y./3.

The trajectories corresponding to the dynamics of the sys-
tem are shown in Fig. 4 for several bias points marked in
. Fig. 3. We see that at the first fluxon step, see Fif),4he

o
~

current y

0.0 e fluxon (double ling moves progressively colliding with the
00 05 10 15 20 25 3.0 semifluxon. The semifluxon corresponds to a more or less
velocity u vertical line shifted to the right from the discontinuity point

by the bias current. Note that in Fig(ad we can see essen-
FIG. 3. Current voltage characteristic after injection of fluxon tially the same dynamics,but the semifluxon is much more

into 0-7r LJJ containing a semifluxon of positive polarity. Alven  delocalized, probably because bias paibrresponds to the
and odd fluxon steps can be traced. The maximum supercurrenf€Sonance which can be seen on the IVC in Fig. 3. We be-
ymax=0.21. The trajectories at the bias points a—d are shown idi€ve that this resonance may be related to the eigenmodes of
Figs. 4a)—4(d). the semifluxon and to the Cherenkov emis&fonf the

plasma waves which are excited when the fluxon periodi-

cally bumps the semifluxon. The emitted plasma wave forms

Actually one can also trace the second fluxon step witHf standing wave which interacts with a fluxon and results in
asymptotic velocityu=2. It corresponds to the staté1] and the resonance on the IVC.

is shown in Fig. 2 by solid gray symbols. We were able to. Thgs, the polarity of the semifluan can be probed by
find this state only starting from the poiatat y=0.3 with a inserting a test fluxon of known polarity and measuring the

fluxon situated ax=5 and an antifluxon at=8. It is impos- IVC. If a fluxon and a semifluxon have the same polarity one

sible to visualize this mode just by sweeping the bias curren I?S?{l#llﬂxeoxnpgggaxﬁ Za/ﬁgng'ﬂé ane::ﬁll?fgﬁig\?; ?ji?f]:atrgit
since this step is shadowed By 00|, and(] steps. polarities, one should expet,,=(2/m7)1.,~0.63; and no

first fluxon step provided the injection was madeyatO.
Another difference between these two configurations is
Now we consider a semifluxon of a positive polarity ini- the value of the retrapping curremt. As one can see from
tially present in the LJJ. The injected fluxon and semifluxonFigs. 2 and 3 the value of, in the 0] =1 state is at least
repel each other and no annihilation can occur. Here we usvice larger than for thé&l] state.
the boundary condition&}) with ke=1 andkge=1 to obtain An interesting observation can be made, if we trace all
the IVC. By applying a small bias current we push the fluxonfluxon branches of the IVC. In a usual annular LJJ with only
along the ring so it approaches the semifluxon. For a smalbne trapped fluxoriwithout a semifluxon one can observe
value of the bias current, the situation is static as the drivindluxon steps a¥/=nV; with only odd numbers: the first one
force of the bias current can be compensated by the repulsicppears due to the motion of a single fluxon, the third one
force between the fluxon and the semifluxon. By increasingorresponds to an additional fluxon-antifluxon pair gener-
the bias current, the fluxon moves closer to the semifluxorated, the fifth one to two fluxon-antifluxon pairs, etc.
and at some critical value of the bias current overcomes the In an annular LJJ containing a fluxon and a semifluxon of
maximum possible repulsion force and passes through thihe same polarity the situation is different. One can observe
semifluxon. After this, the fluxon keeps moving around thefluxon steps with any integer. This is especially easy to
ring, bumping the semifluxon once per cycle. The curreniobserve for thel] state. The reason for this becomes clear
voltage characteristic of this state is shown in Fig. 3. One camfter an analysis of the trajectories shown in Fig. 4 for sev-
see that the maximum supercurre/ﬁf: ~0.21, correspond- eral bias points marked in Fig. 3.

2. Positive semifluxon

R T

a
(@) FIG. 4. Trajectories of semi-
fluxons in the statél] (first fluxon

step for y=0.2(a) and y=0.6 (b)

-
(3,1
1

raaaliaw

N
A

« 103 / and in the statél(]| for y=0.3(c)
) 4 and y=0.6 (d). The vertical
-§ - - )/ dashed line shows the position of
5 . [ ! the discontinuity.The vertical dot-
] ] i ted line shows the position of the
] ] / / center of the static semifluxon at
0 F=f—+4—1 B B — T4 the corresponding bias. If@) for
0 2 4 6 80 2 4 6 80 2 4 6 80 2 4 6 8 v=0 both lines coincide.
coordinate x coordinate x coordinate x coordinate x
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We see that at the second step, there are two positivee can destructively read out the semifluxon state. In prin-
fluxons moving in the same direction and the semifluxonciple, the read out can be made nondestructive, if after read-
became of negative polarifyl]]. This means that the semi- ing out the semifluxon state we introduce another fluxon of
fluxon flipped, and has emitted one positive fluxon—the pro-opposite polarity so that the system returns to its initial state
cess opposite to annihilation. Now, since there are two flux{as before read opias a result of fluxon-fluxon or fluxon-
ons which can move and one negative semifluxon whictsemifluxon annihilation. In the case of two or more semiflux-
cannot, the asymptotic voltage of the step is equal\¥g. 2 ons one can read out the total number of positive and nega-
Still, the system can generate fluxon-antifluxon pairs whichtive semifluxons. This technique is also applicable to
together with semifluxon flipping, will result in fluxon steps arbitrary fractionalk vortices, but not very close te=0 or
for all integern. 27, where depinning currents for both=0 and 1 approach

Actually, a similar effect can be observed when initially zero, see Appendix.
the semifluxon had negative polarity. Then starting from the We have also investigated fluxon steps in an annular LJJ
statel one could trace the fluxon steps corresponding to thevith a 7 discontinuity. We found that one can trace the
stated ]|, 0007, OO0O] (see Fig. 2 The trajectories for some fluxon steps corresponding &l integersn, instead of only
of the bias points can be seen in Fig. 1. oddn like in conventional LJJ with one trapped fluxon. We

We also note that when the semifluxon polarity changeshave observed a smooth transition to the state of two
the shift of the average position of the semifluxon change$unched fluxons in thél[l] state.
too, see Fig. 4. This can be visualized using low-temperature Furthermore, in the Appendix we have derived the Eq.
scanning electron microscopy. (A9) which gives the depinning current df fluxons pinned

Analyzing the trajectories while the bias point movesby an arbitraryx vortex. We discovered that the biggest ob-
along the second fluxon step we discovered that the twastacle for a fluxon is a fractionak; vortex with «;
fluxons are moving more or less equidistantly at a low value=0.861r rather than a semifluxon. The formula10) al-
of the bias current, i.e., at the bottom of the step, as can blews us to compute the sizey of the fractional vortex,
seen in Fig. &). When the bias current increases upjyo which is the biggest obstacle ft fluxons trying to pass it.
~0.45...0.50 or above, the fluxons bunch together as shown
in Fig. 4d). The bunching appears because the plasma
waves, emitted during fluxon-semifluxon collisions, result in ACKNOWLEDGMENTS
an effective attracting potential between two fluxons. We do g .G. thanks H. Susanto and S. van Gils for fruitful dis-

not discuss this phenomenon in detail here, but note thatyssions and hospitality during his visit to University of
similar bunching was observed in JJ arfdyar in stacks of  Twente. This work was supported by the Deutsche

LJJs?® In our case, the role of periodic obstacle is played bYForschungsgemeinschaft, and by the ESF programs “Vortex”
a semifluxon. Generally speaking, the plasma wave emissiognd “pi-shift.”

has a Cherenkov origin and is simply related to the peculiar

dispersion relation for plasma waves in the system under
question?>-27 APPENDIX: DEPINNING OF FLUXONS BY AN

ARBITRARY FRACTIONAL VORTEX

B. Two semifluxons in a ring Since one can study experimentally arbitraryortices’

In the case of more than one semifluxon of unknown pohere we calculate the depinning current for a chainNof
larity, the above read-out procedure cannot give informatiorfluxons that are pinned by and are trying to pass an arbitrary
on the polarity of each of the semifluxons, but allows us tox vortex in a LJJ of infinite length. The calculations for
distinguish between statés) 171, (b) | |, and(c) 1| or | 1. In arbitrary vortex andN fluxons are not more difficult than for
other words, we can find out the total flux hold by semiflux-a semifluxon and a fluxon, therefore we present here this
ons. Injecting the first fluxon in a similar fashion as above,more general case.
we measure the IVC. If the critical current is low, the fluxon — The static version of Eq2) for arbitrary discontinuityx
does not annihilate with semifluxons and keeps movings:
around the ring. This can happen only if in the initial state
both semifluxons had the same polarity as the injected
fluxon. If, after injection of a fluxon], is still high, this  where
means that the injected fluxon has flipped one of the semi-

0(x) = {

Mk = SIMu = 6(X)] =y, (A1)

0 forx<oO,
-k forx>0.

fluxons. In this case we inject a second fluxon and so on. If
| becomes lower after the first injection, the initial state has
been?T; if 1. becomes lower after second injection, the ini-
tial state has been| or | 1; and if I, becomes lower after the
third injection, the initial state has beer.

We write separately the equations for the part of the junc-
tion to the left and to the right from discontinuity, situated at
x=0. After integration one arrives at the following two equa-
IV. CONCLUSIONS tions:

We have shown that by introducing a test fluxon of known Ya(w) = px = £2VCy(y) —cosp =y, x<0,
polarity into the LJJ with a semifluxon of unknown polarity (A2a)
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Depinning current y,(x)

1.0
fractional vortex «/n

0.0 0.5 1.5 2.0

FIG. 6. The dependenceg.(«) calculated for differeniN using
Eq. (A9). The dashed line shows=1 corresponding to the semi-
fluxon. Three dotted lines show the valueg «,, and k3 which
correspond to the fractional vortices which cause the maximum
possible pinning folN=1,2, 3fluxons.

are separated by a large distance. The fluxon corresponds to
the trajectory between poirt (x=-) and pointM. The
fractional vortex corresponds to the trajectory between point

FIG. 5. The trajectories on the phase plane corresponding td1 and pointR (x=+) and contains a poinP where the

Egs. (A2). Black color corresponds tg; (0O par), the gray color

black and gray trajectories intersect, i.e., the phase crosses

corresponds toy, (7 parh. The trajectories are presented for a the O-w boundary. From Figs.(8)—5(c) one can see that with

fluxon pinned by a semifluxoriN=1, «=) and (a) y=0, (b)
vy=-0.1, and(c) y=-0.21. Arrows are shown to guide the eye.
Arrows show the path which corresponds to going fram—c
(point L) to x=+o (point R).

Yo(i) = puyx= £ 2VCy(y) — coduu = k) = yu, x>0.
(A2b)
Assuming that
py(£0) =0, (A3)
u(—=o0) = arcsiny, (A4)
u(+ ) =arcsiny+ 27N + k, (A5)

we arrive to the following expressions f@; andC,:

Ci(y) =V1 -9+ yarcsiny; (A6)

Co(y) =V1-92+ yarcsiny+ (2aN+«k)y. (A7)

We use the phase plane analy3i® find possible static
configurations. The trajectories on the phase plangu)
corresponding to EqgA2) are shown in Fig. 5 fory=0,
|1 < v, and|y|=1v.. At y=0 the fluxon and fractional vortex

increasingy| the intersection poin® shifts until, at the criti-
cal value of|y|=1,, the trajectories just touch each other at
point P, as shown in Fig. &). For larger|y|, no intersection
is possible and the static solution does not exist.

The critical value ofy at which the switching between
trajectories is still possible is defined by the following con-
ditions:

ya(w) =Ya(w),  yi(w) =ya(w). (A8)

This conditions are satisfied fw:§(37r+ k), which leads us
to the final result

. K
SinZ.

> (A9)

YelK) =

The plot of this dependence for differeNtis shown in
Fig. 6. They.(x) has reasonable limiting behavi@absence
of pinning forN>0) for k— 0 andx— 2. For depinning of
a fluxon (N=1) by a semifluxon,y,(7)=2/37=0.21. It is
interesting thaty.(x) has a maximum not at= but a bit
shifted, atx;=0.861r, i.e., ak, vortex is the biggest obstacle
for a fluxon. For two and three fluxons the biggest obstacles
are vortices withk,=0.9187 and x3=0.942r. All «y can be
found from the equation
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2 sin(x’/2
tan% = % + N, (A10) ye(K') = '“(—") (A11)
K

Note, that in the limitN— o, ky— .

Our result(A9) is also valid in the cas&l=0 and gives , . )
the “depinning” current of the vortex itself. The resuktA9) exactly as in Ref. 22. _Physmally thls.means that When_one
coincides with the expression obtained recently for the criti-creates a large discontinuig/ =2N+ « in an annular LJJ, it
cal current of an annular junction in the presence ot a automatically relaxes intdl fluxons trying to pass through
discontinuity of the phasgurrent dipol¢ created by current the fractionalx vortex under the action of bias current. The
injectors?? In fact one can even say that our regi#l9) and  interesting result is that the E¢A9) for an infinitely long
the one of Ref. 22 ar¢he sameat least if one considers linear junction and Eq(Al1l) for an annular one coincide
annular LJJ. In fact, if we denote’=27N+«k, we can re- regardless of “fluxon crowding” which may take place in
write Eq.(A9) as annular LJJ because of its finite length.
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