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Magnetic interference patterns in Josephson junctions withd+is symmetry
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The magnetic interference pattern and the spontaneous flux in unconventional Josephson junctions of su-
perconductors witld +is symmetry are calculated for different reduced junction lengths and the relative factor
of the d- ands-wave components. This is a time-reversal broken symmetry state. We study the stability of the
fractional vortex and antivortex which are spontaneously formed and examine their evolution as we change the
length and the relative factor @ and swave components. Asymmetry in the field-modulated diffraction
pattern exists for lengths as long las- 10\ ;.

[. INTRODUCTION magnetic fieldH in the direction parallel to the plane of the
junction is calculated by solving numerically the sine-

In the past several years one of the main questions in th&ordon equation. The stability of fractional vorticég or
research activity on higfi; superconductors has been the antivorticesf,, , which are spontaneously formed as a con-
identification of the order parameter symmeltfy.The most  sequence of the symmetry, is examined in the absence of
possible scenario is that the pairing state is an admixture of eurrent and magnetic field for different lengths and relative
dominantd wave with some smalk-wave component. This phases.
fact is a direct consequence of the orthorhombic distortion of In the 7-violated state the magnetic interference pattern as
the systems which makes both thevave ands wave indis- has been obtained by Zlei al!?in the short-junction limit
tinguishable(they transform according to the identity repre- is asymmetric. They conclude that for a long junction the
sentation of the groyp There is a basic difference in the magnetically modulated critical current is basically identical
physics if one takes into account the phase difference beo the conventional 0-0 junction due to the formation of the
tween the two parts of the order parameter. The mixing duspontaneous vortex near the center of the junction. Our exact
to orthorhombicity predicts d+s or equivalentlyd—s or-  numerical calculations show that there is a "“dip” near the
der parameter. This has been analyzed within the Ginzburgsenter of the diffraction patterns even for junctions as long as
Landau framework, valid close to,f Experimental obser- 10\;.
vation of this possibility has been clearly realized in The rest of the paper is organized as follows. In Sec. Il we
photoemission experimentand thec-axis tunneling® discuss the Josephson effect between two superconductors

In addition to the above work, calculations based in BCSwith mixed s- andd-wave symmetry. In Sec. Il the role of
weak-coupling theo}*? predict that a mixed symmetry is the twin boundary is discussed. In Sec. IV we present the
realized in a certain range of interaction. This state has theesults for the magnetic flux and the interference pattern.
time-reversal symmetr§ broken. This symmetryd+is) is  Finally, a summary and discussion are presented in the last
realized in bulk calculations only as a consequence of th&ection.
absence of any orthorhombic distortithe Fermi surface is
either circular or tetragonal in the particular examplekich Il. JOSEPHSON EFEECT BETWEEN TWO
favors a phase difference of/2 between the two compo- SUPERCONDUCTORS WITH MIXED WAVE SYMMETRY
nents as opposed to in the presence of it. ) )

The situation becomes more complicated if we consider We consider two superconductors andB), with a two-
surface effects. The observation of fractional vortices on th&omponent order parameteny(® ,n2®), which are sepa-
grain boundary in YBgCw,O; by Kirtley et all* may indi-  rated by an intermediate layer of thicknes® the z direc-
cate a possible violation of the time-reversal symmetry neafon, as seen in Fig.(4). If the angles between the crystalline
grain boundarybecause the boundary breaks the bulk ortho2 axis of each superconductér and B with the junction
rhombic symmetry. Therefore it is interesting to study more interface are defined a8, and 6,, respectively, the bulk
this symmetry in the case of interfaces. order parametens; for the d-wave component anal, for the

In the present paper we study the static properties of &wave component, near the interface can be written as
one-dimensional junction which contains a twin boundary

where the pair transfer integral between the two supercon- ﬁ’i\ei "’/i\:nlocos(zal)ei"’f, z>t,
ductors has an extra relative phase in each twin. The maxi- n=3-g o 4 (1)
mum current . that a junction can carry versus the external n;e'’1=n;pcog26,)e'’1, z<0,
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@ Jero= (2e/m*t)nan2,
a A .
X b Jeoo=(2e/mt)nsns (4)
0, / z are implicit functions of the orientation of the crystalline axis

through the tilded order parameters as seen in Egsand
0 (2); myg,m, ,mg are the effective masses that enter into the
0, X Ginzburg-Landau equations.
A Some special cases are the following.
a (i) For d-wave symmetry one component of the order pa-
B rameter vanishes at the interface,€0). The Josephson
current density becomek=|J.14sin(¢+ ¢.) with ¢.=0 for
(®) Jo11>0 and ¢.=  for J,4,<0.
(i) For (d+s) wave and the restriction wheré, — ¢7

A % <\£a =¢5— ¢P= is fixed on both sides of the interface, the
‘\b

0 C current densityJ depends only on one phase difference

‘\\/‘b ] - through the interface, say=¢>— ¢/, and
0 \ Jdlsi
2+l \ J(¢)=[3clsin(p+ o). ®)

with

0,
m Je=Jc11t Jdezo—Jero— Jean - (6)

In Eq. (5), ¢.=0 for I.>0 and .= = for J.<0.
(iii) For the @+is)-wave case the intrinsic phase differ-
ence within each superconduc#d@ndB can be assumed to

FIG. 1. (a) A single Josephson junction between superconducte ¢’§— ¢{i\: ¢>§— d,?: /2. The current density is
ors A and B with a two-component order parameter. The angle
between the crystallina axis of A (B) and the junction interface is J(d) :jc Sin(¢+ be), 7)
0, (60,). (b) The geometry of the junction between the twinned
crystal(regionsA andC) and the untwinned cryst&l. The dashed with
line marks the twin boundary.

Je= V311t 3202+ (Je1o— Jean)?s (8)
and
tan*12 J;>0
Tel¥2=n,ei??, z>t, Ji i
n2: (2) ¢)C: (9)

~B 4B B J
n2e'¢2—ngoe'¢2. z<0. 7T+tan’1J—2, J;<0,
1

m 12 — -
: ' . through Egs.(1), (2), and (4), defines the relationship be-
The expression for the supercurrent density can be o fween 6, 0, and the phaseb
tained by the Ginzburg-Landau equatitts as a function o2 P e
of the two order parameters and evaluated at the interface to
find the tunneling current density. For this we need the solu- lll. ROLE OF THE TWIN BOUNDARY
tion of the order parameter in the interface which is obtained \ye consider two superconducting sheatand C which
by using the approximation of small thickness compared tQ)verIap for a distanck with the superconducting shef in
the coherence lengfiwith boundary conditions as given by thex direction,[as shown in Fig. (b)]. The relative phase of
Egs.(1) and(2). The approximation leads to a linear varia- thes- andd-wave order parameters in all three superconduct-
tion of the order parameter across the interface. Then thﬁ]g regions is assumed to be/2. The regionsA and C are
supercurrent density can be written as separated with a twin boundary, with odd reflection symme-
5 try. At an odd reflection symmetry twin boundary, the rela-
, tive orientation of thea and b axes changes by/2 on re-
J=”Z:1 Jeij Sin( ‘/’iB_ d’JA)’ 3 flection across the twin boundary, and the lobes ofshed
d order parameters with different sign face each other along
where the boundary® This symmetry is a consequence of the
dominantd-wave order parameter that we have assumed, and
the fact that the order parameter is continuous and varies as
little as possible at the twin boundary. Experiments have
— shown that the transition temperatuiie.) of a twinned crys-
Jez1=(2e/m}t)nyng, tal remains the same following the removal of the twin

Jerr=(2e/mit)nfnk,
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boundary® We then choose the angle between #hexis in We can also compute the free energy of the solution for
regionA and thex direction to bef; = 15°, causing the angle zero current and external magnetic field:

between the axis and the junction interface in regi@to

be 6;=75°. The missorientation angle of supercondu@or AJew L N[ a2
with the junction interface isf,=22.5°. This choice of F=—e Jo 1—coi¢(x)+¢c(x)]+7(5) dx.

angles was made intentionally in order to compare our re- (15)
sults with those of Ref. 12. With the above arrangement a

simple calculation from Eq(9) yields ¢.;=0.017 in 0<x  Note that the no-vortex solutiogp=0 everywhere is not a
<L/2 and ¢.,=1.087 in L/2<x<L. The current transport solution of this problem.

across the junction is taken to be only along #hdirection. When ¢¢1=¢.,=0 we have the conventiona-wave

We describe the entire junction with wideéhsmall compared junction. In case¢.;=0, ¢.,=m we have thed-wave or

to \; in they direction, of lengthL in the x direction, and in  (d+s)-wave junction. The above cases have time-reversal
external magnetic fieltH in they direction. We expect that symmetry (Z conservation When ¢, ¢, are slightly dif-
experiments in Josephson junctions between twinned and ufierent from 0 andw, we have the d+is)-wave pairing,
twinned superconductors will show the results that wewhich is a broken time-reversal symmetry stafeviolation).
present. Our analysis can equally well apply to explain thdn this work, the particular parameters we use afg
results of Ref. 11. The superconducting phase differefice =0.01w, ¢.,=1.087, and the pairing state id{-is).

across the junction is then the solution of the sine-Gordon

equation IV. SPONTANEOUS MAGNETIC FLUX AND
2600 INTERFERENCE PATTERNS FOR THE Z-VIOLATING
X

PAIRING STATE
2
dx We consider first a symmetric 8- junction. Here the
with the inline boundary conditions change ofp. from 0 to 7 introduces spontaneous flux lines,
i.e., vortices with half the conventional flux quantumb €

1
= PSifiqﬁ(XH be(X)], (10
J

do I +dy/2), if the junction length is much larger thery. We
ax =*5+H. (1D call them half-vortex ) and antivortex ki,,) solutions. To
x=0L obtain these vortices as solutions of E4Q) for zero current
The Josephson penetration depth is given by and magnetic field, a kink or antikink like initial condition is

used, which is iterated until convergence. Using liheand

fc2 h,, solutions as initial conditions and increasing the current
A= ~ we are able to reach the critical currdgtfor a given mag-
8medl netic field. In Fig. 2 we plot the critical currehf as a func-

whered is the sum of the penetration depths in two superdion of the magnetic fluxP (in units of @) for different
conductors plus the thickness of the insulator layer. We alsé##nction lengthsi(a) L=10, (b) L=4, (c) L=2, and(d) L

assume that the critical current densityis constant within =~ — 1 (Ay=1). The circ_:les(square}sin this figure correspond
each segment of the interface. to the half vortex(antivorteX branch. For most of the range

The spatial variation ofs induces a local magnetic field Of existence oh, (h,) the magnetic flux is positivénega-
given by the expression tive) while there is a small region where it turns into an

antivortex (vortex). A similar calculation has been done in

®y de(X) Refs. 17 and 18 where they considered onlylihesolution.
H(x)= 77t dx (120 As we can see, there is a “dip” @& =0, for lengths as long
asL=10.
We can classify the different solutions obtained from Eq. In the (d+is)-wave case, whereb;;=0.017 and ¢,
(10) with their magnetic flux content =1.087, the phasep must form a kink or antikink neax

=0 in order to match the conditions on both sides. A new
(ON flux quantization appeark = y®, wherey is neither integer
= ﬁ(‘l’R_ bL), (13 nor half-integer. We call the solution with positive flux a
fractional vortex €,) while the negative-flux solution is the
where ¢g() is the value of¢g at the rightleft) edge of the  fractional antivortex f,,). Note thaty is equal to + (¢,
junction, and®,=hc/2e is the flux quantum. — ¢eq) /27 for the (f,) solution'? and (— ¢ep+ be1) /27 for
To check the stability we consider small perturbationsihe (fav) in the |ong-juncti0n limit. In F|g 3 we present our
u(x,t)=v(x)e* on the static solutiom(x), and linearize the  calculations for theZ-violation case whereb.,=0.017 and

time-dependent sine-Gordon equation to obtain $e;=1.087. We also plot forL=1 the analytical result
, (solid line) of Zhu et al!? In contrast to the pure-wave

d“v(x) case, for small lengths this pattern is asymmetric and the
A2 +cod () + de(X)IVO)=AV(X), (14 wgip” in the maximum current does not occur dt=0, but

at a finited value. This behavior also exists for lengths as
under the boundary conditiorb(x)/dx|x—o. =0, wherex long asL=10.
= -2 It is seen that if the eigenvalue equation has a nega- If we plot I, vs H (and not®), then the two branches in
tive eigenvalue the static solutiaf(x) is unstable. Fig. 3 will be almost coincident and one might draw the
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FIG. 2. Critical current . versus the magnetic flu® (in units

of ®,) for a symmetric O= junction, for different junction lengths:
(@ L=10,(b) L=4,(c) L=2, and(d) L=1.

FIG. 3. Critical currentl, versus the magnetic flud for a
junction withd+is symmetry,¢p.;= 0.01l7, ¢.,=1.08m, for dif-
ferent junction lengthsa) L=10, (b) L=4, (c) L=2, and(d) L
=1.

conclusion that the behavior for a long junction is the same Figure 4 addresses the question of spontaneous flux gen-
independent of the symmetry. The proper quantity to coneration in junctions with broken time-reversal symmetfy (
sider though is the total magnetic flux which includes bothviolation) as a function of the reduced length) and the
the contribution from the external field and the induced self+elative factor ofs andd components. The long-dashed line
field. It should be remarked that for @wave junction the is the result of Ref. 12 which compares with our numerical
relation betweenP andH is linear for smallH so that the result (solid line). Both cases haveg.;=0.01m, ¢,
plot of | . vs H or ® does not show any differences for small =1.087. The approximation they made is that the formation
H. For higherH, however, the overlapping branchéer  of the spontaneous vortex at the junction center simply
long L) are unfolded. In the case of a different symmetrychanges the phase in the léfight) part of the junction by
even the smalH form can change due to the existence of ¢¢1 (¢¢2). This approximation is valid for long junctions but
spontaneous magnetization. as we can see in Fig. 4 does not hold for junctions with
In Figs. 3@ and 3b) both f,, andf,, branches are stable. lengths less than A3, since the exponentially decaying
There are also unstable branches which are not presented, Bralytic solution does not satisfy the zero-current boundary
are seen in Fig. ®). Thel. almost coincides for two solu- conditions at the ends. We have also used two other values
tions, one of which is stable and the other unstable. Still wdor ¢¢,, i.e., 0.97 (dotted ling and 0.8r (dashed ling We
can distinguish the two peaks correspondind fandf, . conclude that as we decrease the valuggf the fractional
As expected for the short lengti. £ 1) the stable and un- vortexf, tends out to be a2 vortex, whereas the fractional
stable branches are exactly coincident. These unstabkntivortex gradually loses its flux content.
branches also exist for longer lengths but we need different In Fig. 5@ we have plotted the magnetic fluk (solid
initial conditions to obtain them due to the strong nonlinearline, ®,=1) versus the valug,, for L=10 andH=0. In
dependence ob on the magnetic fieldH. In the calculations the limit ¢.,=0 and ¢.,=0 the junction behaves as the
we vary nonmonotonically the magnetic field, but the slopeusuals-type junctiont® where the different solutions are dis-
of ®(H) changes sign near the boundary separating th&nguished by the number of complete vortices present in the
stable and unstable solution. junction. Solutions where the junction contains more than
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FIG. 4. The spontaneous magnetic fidxas a function of the

reduced junction length, for different values of the intrinsic phase

¢ in the right partL/2<x<L of the junction andp.;=0.01s.

and fewer tham+ 1 vortices we say that they belong to the
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FIG. 6. The ratio of the free energl/F,, as a function of the
reduced junction length, for different values of¢.,: (8 f,, (b)

fav-

(n, n+1) branch. In this case the only stable solutionsides, the unstable vortex solution of theype junction with

present in the junction is that with=0 everywhere. This
solution has magnetic flu®=0 and belongs to th€0,1)
branch. The vortex and antivortex solutions with=1 and
d=—1, respectively, also exists fad =0, but as seen in
Ref. 20 are unstable. As we increase the vajlyg, the no-
vortex solution with®=0 of the usuals-type junction is
transformed to the fractional antivortehg, . If we further
increaseg., (not presented in the figureit will reach the
full antivortex of thes-wave junction wheng.,=27. Be-

1.5
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FIG. 5. The evolution of the fractional vortd and antivortex
f,y @s a function ofg.,, for two different lengthga) L= 10, (b)

d=1, as we increasé.,, goes to the, of thed+is junc-
tion stabilizing itself as seen by the stability analysis from
which the lowest eigenvalue is also displayéght line). If

we continue increasing thé.,, it will go to the no-vortex
solution of the usuas-type junction. The linear dependence
of ® from ¢, can also be seen in the analytical result of
Ref. 12, for large lengths, where the approximation they
made is valid. When we changk.; and keepp.,=0, from

0 to 27, the(0,1) branch goes td, and then to the unstable
(1,2, while the unstable {2,—1) branch goes td,, and
then to the stabl€0,1).

The situation is a little bit different for small lengths as
can be seen from Fig.(B) whereL=1, H=0. Here the
stable solution of the-wave junction will be transformed to
the f,, of the (d+is)-wave junction, with the increase of
d¢2, While the unstablé =0 solution of thes-wave junction
will go to the stablef,, when ¢, is equal to 1.0&. Notice
that the magnetic flux remains almost constant—almost
zero—which can be expected since we are in the short-
junction limit where self-currents are neglected.

In Fig. 6 we plot the ratid=/F of the free energy of the
state with some spontaneous flux to the state with no flux.
This ratio becomes larger than 1 as we decreasebthefor
the f,, branch, for small lengths. On the other hand, when
F/Fy<1 the no-flux state is metastable and the final state
will be the one with spontaneous flux.

V. CONCLUSIONS

We have studied the static properties of a one-
dimensional junction witid+is order parameter symmetry.
The magnetic interference pattern is asymmetric, and there
exist a “dip” near ®=0 for lengths as long as 13. The
diffraction pattern of a junction can give us information

L=1. The stability of theses branches is also denoted by the lowegtbout the pairing symmetry, at least where junctions are
eigenvalue\ ; of the linearized eigenvalue problem. Note that the formed.

double arrow connects the flux with its stability curve.

We have followed the evolution of spontaneously formed
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vortex and antivortex solutions for different mixing betweenlong as the there is a well-defined area close to the interface
the s and d components of the order parameter. We havewhere the time-reversal symmetry is not conserved and the
shown that for small lengths the fractional vortex becomesunction is formed.

unstable as we decrease the extra phase of the pair transfer

integral in the right part of the junction. We conclude that

when a mixing state symmetry is realized, the fractional vor- ACKNOWLEDGMENTS
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