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Magnetic interference patterns in Josephson junctions withd¿ is symmetry
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The magnetic interference pattern and the spontaneous flux in unconventional Josephson junctions of su-
perconductors withd1 is symmetry are calculated for different reduced junction lengths and the relative factor
of thed- ands-wave components. This is a time-reversal broken symmetry state. We study the stability of the
fractional vortex and antivortex which are spontaneously formed and examine their evolution as we change the
length and the relative factor ofd- and s-wave components. Asymmetry in the field-modulated diffraction
pattern exists for lengths as long asL510lJ .
th
he

o

o

e-
e
b

du

ur

in

CS
s
th

th

-

de
th

ea
ho
e

f
r
o
ax
a

e
e-

n-
e of
ive

as

he
al
he
xact
he

as

we
ctors
f
the
rn.
last

e

I. INTRODUCTION

In the past several years one of the main questions in
research activity on high-Tc superconductors has been t
identification of the order parameter symmetry.1–5 The most
possible scenario is that the pairing state is an admixture
dominantd wave with some smalls-wave component. This
fact is a direct consequence of the orthorhombic distortion
the systems which makes both thed wave ands wave indis-
tinguishable~they transform according to the identity repr
sentation of the group!. There is a basic difference in th
physics if one takes into account the phase difference
tween the two parts of the order parameter. The mixing
to orthorhombicity predicts ad1s or equivalentlyd2s or-
der parameter. This has been analyzed within the Ginzb
Landau framework, valid close to Tc.

6 Experimental obser-
vation of this possibility has been clearly realized
photoemission experiments7 and thec-axis tunneling.8

In addition to the above work, calculations based in B
weak-coupling theory9,10 predict that a mixed symmetry i
realized in a certain range of interaction. This state has
time-reversal symmetryT broken. This symmetry (d1 is) is
realized in bulk calculations only as a consequence of
absence of any orthorhombic distortion~the Fermi surface is
either circular or tetragonal in the particular examples! which
favors a phase difference ofp/2 between the two compo
nents as opposed top in the presence of it.

The situation becomes more complicated if we consi
surface effects. The observation of fractional vortices on
grain boundary in YBa2Cu3O7 by Kirtley et al.11 may indi-
cate a possible violation of the time-reversal symmetry n
grain boundary~because the boundary breaks the bulk ort
rhombic symmetry!. Therefore it is interesting to study mor
this symmetry in the case of interfaces.

In the present paper we study the static properties o
one-dimensional junction which contains a twin bounda
where the pair transfer integral between the two superc
ductors has an extra relative phase in each twin. The m
mum currentI c that a junction can carry versus the extern
PRB 610163-1829/2000/61~6!/4270~6!/$15.00
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magnetic fieldH in the direction parallel to the plane of th
junction is calculated by solving numerically the sin
Gordon equation. The stability of fractional vorticesf v or
antivorticesf av , which are spontaneously formed as a co
sequence of the symmetry, is examined in the absenc
current and magnetic field for different lengths and relat
phases.

In theT-violated state the magnetic interference pattern
has been obtained by Zhuet al.12 in the short-junction limit
is asymmetric. They conclude that for a long junction t
magnetically modulated critical current is basically identic
to the conventional 0-0 junction due to the formation of t
spontaneous vortex near the center of the junction. Our e
numerical calculations show that there is a ‘‘dip’’ near t
center of the diffraction patterns even for junctions as long
10lJ .

The rest of the paper is organized as follows. In Sec. II
discuss the Josephson effect between two supercondu
with mixed s- andd-wave symmetry. In Sec. III the role o
the twin boundary is discussed. In Sec. IV we present
results for the magnetic flux and the interference patte
Finally, a summary and discussion are presented in the
section.

II. JOSEPHSON EFFECT BETWEEN TWO
SUPERCONDUCTORS WITH MIXED WAVE SYMMETRY

We consider two superconductors (A andB), with a two-
component order parameter (n1

A(B) ,n2
A(B)), which are sepa-

rated by an intermediate layer of thicknesst in the z direc-
tion, as seen in Fig. 1~a!. If the angles between the crystallin
a axis of each superconductorA and B with the junction
interface are defined asu1 and u2, respectively, the bulk
order parametersn1 for thed-wave component andn2 for the
s-wave component, near the interface can be written as

n15H ñ1
Aeif1

A
5n10cos~2u1!eif1

A
, z.t,

ñ1
Beif1

B
5n10cos~2u2!eif1

B
, z,0,

~1!
4270 ©2000 The American Physical Society
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and

n25H ñ2
Aeif2

A
5n20e

if2
A
, z.t,

ñ2
Beif2

B
5n20e

if2
B
, z,0.

~2!

Here f1
m and f2

m , m5A,B, are the phases of the order p
rameters in superconductorsA andB.

The expression for the supercurrent density can be
tained by the Ginzburg-Landau equations12,13 as a function
of the two order parameters and evaluated at the interfac
find the tunneling current density. For this we need the so
tion of the order parameter in the interface which is obtain
by using the approximation of small thickness compared
the coherence length,14 with boundary conditions as given b
Eqs. ~1! and ~2!. The approximation leads to a linear vari
tion of the order parameter across the interface. Then
supercurrent density can be written as

J5 (
i , j 51

2

Jci j sin~f i
B2f j

A!, ~3!

where

Jc115~2e/md* t !ñ1
Añ1

B ,

Jc215~2e/mn* t !ñ1
Añ2

B ,

FIG. 1. ~a! A single Josephson junction between supercondu
ors A and B with a two-component order parameter. The an
between the crystallinea axis ofA ~B! and the junction interface is
u1 (u2). ~b! The geometry of the junction between the twinn
crystal~regionsA andC) and the untwinned crystalB. The dashed
line marks the twin boundary.
b-

to
-
d
o

e

Jc125~2e/mn* t !ñ2
Añ1

B ,

Jc225~2e/ms* t !ñ2
Añ2

B ~4!

are implicit functions of the orientation of the crystalline ax
through the tilded order parameters as seen in Eqs.~1! and
~2!; md ,mn ,ms are the effective masses that enter into t
Ginzburg-Landau equations.

Some special cases are the following.
~i! For d-wave symmetry one component of the order p

rameter vanishes at the interface (n250). The Josephson
current density becomesJ5uJc11usin(f1fc) with fc50 for
Jc11.0 andfc5p for Jc11,0.

~ii ! For (d1s) wave and the restriction wheref2
A2f1

A

5f2
B2f1

B5p is fixed on both sides of the interface, th
current densityJ depends only on one phase differen
through the interface, say,f5f1

B2f1
A , and

J~f!5uJ̃cusin~f1fc!, ~5!

with

J̃c5Jc111Jc222Jc122Jc21. ~6!

In Eq. ~5!, fc50 for J̃c.0 andfc5p for J̃c,0.
~iii ! For the (d1 is)-wave case the intrinsic phase diffe

ence within each superconductorA andB can be assumed to
be f2

A2f1
A5f2

B2f1
B5p/2. The current densityJ is

J~f!5 J̃c sin~f1fc!, ~7!

with

J̃c5A~Jc111Jc22!
21~Jc122Jc21!

2, ~8!

fc5H tan21
J2

J1
, J1.0,

p1tan21
J2

J1
, J1,0,

~9!

where J15Jc111Jc22, J25Jc212Jc12. Equation ~9!,
through Eqs.~1!, ~2!, and ~4!, defines the relationship be
tweenu1 ,u2 and the phasefc .

III. ROLE OF THE TWIN BOUNDARY

We consider two superconducting sheetsA andC which
overlap for a distanceL with the superconducting sheetB, in
thex direction,@as shown in Fig. 1~b!#. The relative phase o
thes- andd-wave order parameters in all three supercondu
ing regions is assumed to bep/2. The regionsA andC are
separated with a twin boundary, with odd reflection symm
try. At an odd reflection symmetry twin boundary, the re
tive orientation of thea and b axes changes byp/2 on re-
flection across the twin boundary, and the lobes of thes and
d order parameters with different sign face each other al
the boundary.15 This symmetry is a consequence of th
dominantd-wave order parameter that we have assumed,
the fact that the order parameter is continuous and varie
little as possible at the twin boundary. Experiments ha
shown that the transition temperature (Tc) of a twinned crys-
tal remains the same following the removal of the tw

t-
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boundary.16 We then choose the angle between thea axis in
regionA and thex direction to beu1515°, causing the angle
between thea axis and the junction interface in regionC to
be u3575°. The missorientation angle of superconductoB
with the junction interface isu2522.5°. This choice of
angles was made intentionally in order to compare our
sults with those of Ref. 12. With the above arrangemen
simple calculation from Eq.~9! yields fc150.01p in 0,x
,L/2 andfc251.08p in L/2,x,L. The current transpor
across the junction is taken to be only along thez direction.
We describe the entire junction with widthw small compared
to lJ in they direction, of lengthL in thex direction, and in
external magnetic fieldH in the y direction. We expect tha
experiments in Josephson junctions between twinned and
twinned superconductors will show the results that
present. Our analysis can equally well apply to explain
results of Ref. 11. The superconducting phase differencf
across the junction is then the solution of the sine-Gord
equation

d2f~x!

dx2
5

1

lJ
2

sin@f~x!1fc~x!#, ~10!

with the inline boundary conditions

df

dxU
x50,L

56
I

2
1H. ~11!

The Josephson penetration depth is given by

lJ5A \c2

8pedJ̃c

,

whered is the sum of the penetration depths in two sup
conductors plus the thickness of the insulator layer. We a
assume that the critical current densityJ̃c is constant within
each segment of the interface.

The spatial variation off induces a local magnetic fiel
given by the expression

H~x!5
F0

2pt

df~x!

dx
. ~12!

We can classify the different solutions obtained from E
~10! with their magnetic flux content

F5
F0

2p
~fR2fL!, ~13!

wherefR(L) is the value off at the right~left! edge of the
junction, andF05hc/2e is the flux quantum.

To check the stability we consider small perturbatio
u(x,t)5v(x)est on the static solutionf(x), and linearize the
time-dependent sine-Gordon equation to obtain

d2v~x!

dx2
1cos@f~x!1fc~x!#v~x!5lv~x!, ~14!

under the boundary conditionsdv(x)/dxux50,L50, wherel
52s2. It is seen that if the eigenvalue equation has a ne
tive eigenvalue the static solutionf(x) is unstable.
-
a

n-
e
e

n

-
o

.

s

a-

We can also compute the free energy of the solution
zero current and external magnetic field:

F5
\ J̃cw

2e E
0

LF12cos@f~x!1fc~x!#1
lJ

2

2 S ]f

]x D 2Gdx.

~15!

Note that the no-vortex solutionf50 everywhere is not a
solution of this problem.

When fc15fc250 we have the conventionals-wave
junction. In casefc150, fc25p we have thed-wave or
(d1s)-wave junction. The above cases have time-reve
symmetry (T conservation!. Whenfc1 , fc2 are slightly dif-
ferent from 0 andp, we have the (d1 is)-wave pairing,
which is a broken time-reversal symmetry state (T violation!.
In this work, the particular parameters we use arefc1
50.01p, fc251.08p, and the pairing state is (d1 is).

IV. SPONTANEOUS MAGNETIC FLUX AND
INTERFERENCE PATTERNS FOR THE T-VIOLATING

PAIRING STATE

We consider first a symmetric 0-p junction. Here the
change offc from 0 top introduces spontaneous flux line
i.e., vortices with half the conventional flux quantum (F5
6F0/2), if the junction length is much larger thenlJ . We
call them half-vortex (hv) and antivortex (hav) solutions. To
obtain these vortices as solutions of Eq.~10! for zero current
and magnetic field, a kink or antikink like initial condition i
used, which is iterated until convergence. Using thehv and
hav solutions as initial conditions and increasing the curr
we are able to reach the critical currentI c for a given mag-
netic field. In Fig. 2 we plot the critical currentI c as a func-
tion of the magnetic fluxF ~in units of F0) for different
junction lengths:~a! L510, ~b! L54, ~c! L52, and~d! L
51 (lJ51). The circles~squares! in this figure correspond
to the half vortex~antivortex! branch. For most of the rang
of existence ofhv (hav) the magnetic flux is positive~nega-
tive! while there is a small region where it turns into a
antivortex ~vortex!. A similar calculation has been done i
Refs. 17 and 18 where they considered only thehv solution.
As we can see, there is a ‘‘dip’’ atF50, for lengths as long
asL510.

In the (d1 is)-wave case, wherefc150.01p and fc2
51.08p, the phasef must form a kink or antikink nearx
50 in order to match the conditions on both sides. A n
flux quantization appearsF5xF0 wherex is neither integer
nor half-integer. We call the solution with positive flux
fractional vortex (f v) while the negative-flux solution is the
fractional antivortex (f av). Note thatx is equal to 12(fc2
2fc1)/2p for the (f v) solution12 and (2fc21fc1)/2p for
the (f av) in the long-junction limit. In Fig. 3 we present ou
calculations for theT-violation case wherefc150.01p and
fc251.08p. We also plot forL51 the analytical result
~solid line! of Zhu et al.12 In contrast to the pured-wave
case, for small lengths this pattern is asymmetric and
‘‘dip’’ in the maximum current does not occur atF50, but
at a finiteF value. This behavior also exists for lengths
long asL510.

If we plot I c vs H ~and notF), then the two branches in
Fig. 3 will be almost coincident and one might draw th
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conclusion that the behavior for a long junction is the sa
independent of the symmetry. The proper quantity to c
sider though is the total magnetic flux which includes bo
the contribution from the external field and the induced s
field. It should be remarked that for ans-wave junction the
relation betweenF and H is linear for smallH so that the
plot of I c vs H or F does not show any differences for sma
H. For higherH, however, the overlapping branches~for
long L) are unfolded. In the case of a different symme
even the smallH form can change due to the existence
spontaneous magnetization.

In Figs. 3~a! and 3~b! both f v and f av branches are stable
There are also unstable branches which are not presented
are seen in Fig. 3~c!. The I c almost coincides for two solu
tions, one of which is stable and the other unstable. Still
can distinguish the two peaks corresponding tof v and f av .
As expected for the short length (L51) the stable and un
stable branches are exactly coincident. These unst
branches also exist for longer lengths but we need diffe
initial conditions to obtain them due to the strong nonline
dependence ofF on the magnetic fieldH. In the calculations
we vary nonmonotonically the magnetic field, but the slo
of F(H) changes sign near the boundary separating
stable and unstable solution.

FIG. 2. Critical currentI c versus the magnetic fluxF ~in units
of F0) for a symmetric 0-p junction, for different junction lengths
~a! L510, ~b! L54, ~c! L52, and~d! L51.
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Figure 4 addresses the question of spontaneous flux
eration in junctions with broken time-reversal symmetryT
violation! as a function of the reduced length~L! and the
relative factor ofs andd components. The long-dashed lin
is the result of Ref. 12 which compares with our numeric
result ~solid line!. Both cases havefc150.01p, fc2
51.08p. The approximation they made is that the formati
of the spontaneous vortex at the junction center sim
changes the phase in the left~right! part of the junction by
fc1 (fc2). This approximation is valid for long junctions bu
as we can see in Fig. 4 does not hold for junctions w
lengths less than 10lJ , since the exponentially decayin
analytic solution does not satisfy the zero-current bound
conditions at the ends. We have also used two other va
for fc2, i.e., 0.9p ~dotted line! and 0.8p ~dashed line!. We
conclude that as we decrease the value offc2 the fractional
vortex f v tends out to be a 2p vortex, whereas the fractiona
antivortex gradually loses its flux content.

In Fig. 5~a! we have plotted the magnetic fluxF ~solid
line, F051) versus the valuefc2 for L510 andH50. In
the limit fc250 and fc150 the junction behaves as th
usuals-type junction,19 where the different solutions are dis
tinguished by the number of complete vortices present in
junction. Solutions where the junction contains more than

FIG. 3. Critical currentI c versus the magnetic fluxF for a
junction with d1 is symmetry,fc15 0.01p, fc251.08p, for dif-
ferent junction lengths:~a! L510, ~b! L54, ~c! L52, and~d! L
51.
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and fewer thann11 vortices we say that they belong to th
(n, n11) branch. In this case the only stable soluti
present in the junction is that withf50 everywhere. This
solution has magnetic fluxF50 and belongs to the~0,1!
branch. The vortex and antivortex solutions withF51 and
F521, respectively, also exists forH50, but as seen in
Ref. 20 are unstable. As we increase the valuefc2, the no-
vortex solution withF50 of the usuals-type junction is
transformed to the fractional antivortexf av . If we further
increasefc2 ~not presented in the figure!, it will reach the
full antivortex of thes-wave junction whenfc252p. Be-

FIG. 4. The spontaneous magnetic fluxF as a function of the
reduced junction lengthL, for different values of the intrinsic phas
fc2 in the right partL/2,x,L of the junction andfc150.01p.

FIG. 5. The evolution of the fractional vortexf v and antivortex
f av as a function offc2, for two different lengths~a! L510, ~b!
L51. The stability of theses branches is also denoted by the low
eigenvaluel1 of the linearized eigenvalue problem. Note that t
double arrow connects the flux with its stability curve.
sides, the unstable vortex solution of thes-type junction with
F51, as we increasefc2, goes to thef v of the d1 is junc-
tion stabilizing itself as seen by the stability analysis fro
which the lowest eigenvalue is also displayed~light line!. If
we continue increasing thefc2, it will go to the no-vortex
solution of the usuals-type junction. The linear dependenc
of F from fc2 can also be seen in the analytical result
Ref. 12, for large lengths, where the approximation th
made is valid. When we changefc1 and keepfc250, from
0 to 2p, the ~0,1! branch goes tof v and then to the unstabl
~1,2!, while the unstable (22,21) branch goes tof av and
then to the stable~0,1!.

The situation is a little bit different for small lengths a
can be seen from Fig. 5~b! where L51, H50. Here the
stable solution of thes-wave junction will be transformed to
the f av of the (d1 is)-wave junction, with the increase o
fc2, while the unstableF50 solution of thes-wave junction
will go to the stablef v whenfc2 is equal to 1.08p. Notice
that the magnetic flux remains almost constant—alm
zero—which can be expected since we are in the sh
junction limit where self-currents are neglected.

In Fig. 6 we plot the ratioF/F0 of the free energy of the
state with some spontaneous flux to the state with no fl
This ratio becomes larger than 1 as we decrease thefc2, for
the f v branch, for small lengths. On the other hand, wh
F/F0,1 the no-flux state is metastable and the final st
will be the one with spontaneous flux.

V. CONCLUSIONS

We have studied the static properties of a on
dimensional junction withd1 is order parameter symmetry
The magnetic interference pattern is asymmetric, and th
exist a ‘‘dip’’ near F50 for lengths as long as 10lJ . The
diffraction pattern of a junction can give us informatio
about the pairing symmetry, at least where junctions
formed.

We have followed the evolution of spontaneously form

st

FIG. 6. The ratio of the free energy,F/F0, as a function of the
reduced junction lengthL, for different values offc2: ~a! f v , ~b!
f av .
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vortex and antivortex solutions for different mixing betwe
the s and d components of the order parameter. We ha
shown that for small lengths the fractional vortex becom
unstable as we decrease the extra phase of the pair tra
integral in the right part of the junction. We conclude th
when a mixing state symmetry is realized, the fractional v
tex and antivortex solutions evolve differently and this ch
acterizes the (d1 is)-wave pairing. We expect these finding
to hold even if a bulkd1s state evolves continuously as
function of distance from the interface to ad1 is one, as
.
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long as the there is a well-defined area close to the inter
where the time-reversal symmetry is not conserved and
junction is formed.
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